Matemática do Vazio (resolva equívocos e pense com clareza!)

O ser humano alcançará o máximo estágio evolutivo após conseguir superar todas as crenças em todo tipo de inexistentes, quando alcançarmos essa meta, saberemos de forma permanente que não poderá existir espaços/subespaços sem que o vazio não esteja presente. E não importa quão grande seja nosso universo, o vazio existe em todos os espaços. O vazio é um autovalor e autovetor em todos os espaços de conhecimento.

Sabemos que o conjunto vazio existe, é contável e bem fundado. Se algo não puder ser contado é nulo e não poderá fazer referências ao conhecimento!

O produto da crença em inexistentes é sempre nulo.

PCI = NULL {nulo}.

{RC}

Quem tem por que viver, suporta qualquer como.

{Nietzsche}

O vazio é origem de tudo, caso você se sinta vazio, não se preocupe, esta é a melhor oportunidade para recomeçar!

{RC}

Característica do Conjunto Vazio

O conjunto vazio é um subconjunto de A.
∀A: ∅ ⊆ A
A união de A com o conjunto vazio é A.
∀A: A U ∅ = A
A interseção de A com o conjunto vazio é o conjunto vazio.
∀A: A ∩ ∅ = ∅
O produto cartesiano de A e o conjunto vazio é o conjunto vazio.
∀A: A × ∅ = ∅
O conjunto vazio possui as seguintes propriedades
Seu único subconjunto é o próprio conjunto vazio.
∀A: A ⊆ ∅ ⇒ A = ∅
O conjunto de potência do conjunto vazio é o conjunto que contém apenas o conjunto vazio:
2^∅ = {∅}
Seu número de elementos (isto é, sua cardinalidade) é zero:
|∅| = 0
Uma soma vazia é zero:
Soma {{}} = 0
Um produto vazio é um:
Produto {{}} = 1
Uma permutação vazia também é um:
0! = 1

Exemplo 1

Existe um conjunto vazio ∅ que não contém elementos. Para todos 𝑥, a declaração 𝑥 ∈ ∅ é falsa. Em particular, para cada conjunto 𝐴 a implicação lógica “𝑥 ∈ ∅ implica 𝑥 ∈ 𝐴” é vazia (tem uma hipótese falsa).

Consequentemente, ∅ ⊆ 𝐴 é verdadeiro para todos em 𝐴.

Observação

Créditos imagem: Pngwig.

O conjunto vazio é único: se ∅ e ∅’ são conjuntos sem elementos, então ∅ ⊆ ∅’ e ∅’ ⊆ ∅ são ambos verdadeiros, então ∅ = ∅’.

Em matemática, sempre restringimos nossa atenção aos conjuntos contidos em um conjunto fixo 𝒰, chamado universo. Os subconjuntos específicos de 𝒰 são convenientemente descritos usando a notação do construtor de conjuntos, na qual os elementos são selecionados de acordo com as condições lógicas formalmente conhecidas como predicados.

A expressão {𝑥 em 𝒰|𝑃(𝑥)} é lida “o conjunto de todos 𝑥 em 𝒰 de modo que 𝑃(𝑥)”.

Exemplo 2

A expressão {𝑥 em Y|𝑥 > 0}, lida como “o conjunto de todos os 𝑥 em Y de modo que 𝑥 > 0”, especifica o conjunto de + números inteiros positivos.
Para personificar, se 𝒰 é uma população cujos elementos são indivíduos, um subconjunto 𝐴 de 𝒰 é um clube ou organização, e o predicado que define 𝐴 é um cartão de sócio. Examinamos indivíduos 𝑥 para associação 𝐴 verificando se 𝑥 carrega ou não o cartão de associação para 𝐴; ou seja, se 𝑃(𝑥) é verdadeiro ou não.

Exemplo 3

Não pode existir nenhum “conjunto 𝒰 de todos os conjuntos”. Se existisse, o conjunto 𝑅 = {𝑥 em 𝒰|𝑥 ∉ 𝑥}, compreendendo todos os conjuntos que não são elementos de si mesmos, teria a propriedade que 𝑅 ∈ 𝑅 se e somente se 𝑅 ∉ 𝑅. Essa contradição é conhecida como paradoxo de Russell, formulada pelo lógico inglês Bertrand Russell.

Obs: Não confunda o conjunto vazio com o número zero!

Ex: o conjunto {0} ≠ 0 porque {0} é um conjunto com um elemento, ou seja, {{}}, enquanto 0 é apenas o símbolo que representa o número zero.

Exemplo 4

A expressão {𝑥 em Y|𝑥 = 2𝑛 para alguns 𝑛 em Y} é o conjunto de números pares. Muitas vezes, denotamos esse conjunto em 2Y, com a ideia de que o número inteiro geral resulta da multiplicação de algum número inteiro por 2. Da mesma forma, o conjunto de números inteiros ímpares pode ser expresso como 2Y + 1 = {𝑥 em Y|𝑥 = 2𝑛 + 1 para alguns 𝑛 em Y}.

Von Neumann definição de ordinais (cardinalidade)

Na matemática, particularmente na teoria de conjuntos de Zermelo-Fraenkel, o universo de von Neumann, hierarquia de von Neumann dos conjuntos, ou hierarquia cumulativa, abreviado V, é uma classe definida por recursão transfinita: a classe dos conjuntos hereditariamente bem fundados. V é o modelo mais aceito da teoria de conjuntos de Zermelo-Fraenkel, pelo qual pode ser entendido intuitivamente como a classe de todos os conjuntos.

Definição de V

Representação transfinita de Von Newman. (créditos imagem: http://www.pngwing.com).

V é definida por recursão transfinita.

O primeiro nível é o conjunto vazio:

\displaystyle \huge V_{0}:=\emptyset

Para um ordinal α, sendo {\displaystyle {\mathcal {P}}(x)} o conjunto das partes de  x :

\displaystyle \huge V_{\alpha+1}:=\mathcal{P}\left(V_{\alpha}\right)

Para um ordinal limite β:

\displaystyle \huge V_{\beta}:=\bigcup_{\alpha<\beta} V_{\alpha}

É importante ressaltar que existe uma fórmula {\displaystyle \phi (x,\alpha )} da linguagem da teoria de conjuntos de Zermelo-Fraenkel que representa {\displaystyle x\in V_{\alpha }}.

Uma definição alternativa às três últimas, está dada pela fórmula:

Para β um ordinal:

\displaystyle \huge V_{\beta}:=\bigcup_{\alpha<\beta} \mathcal{P}\left(V_{\alpha}\right)

Finalmente, sendo V a união de todos os Vα:

\displaystyle \huge \mathrm{V}:=\bigcup_{\alpha \in \mathrm{O} n} V_{a}

O uso do símbolo de união na última linha constitui um abuso da linguagem, de modo que {\displaystyle x\in \mathbf {\mathsf {V}} } deve ser interpretado como “existe um ordinal \alpha tal que {\displaystyle x\in V_{\alpha }}.

Note-se que para cada ordinal α, Vα é um conjunto; porém V não é um conjunto.

A denominação hierarquia cumulativa é usada pois V está definida sobre os ordinais, de modo que:

Assim podemos resumir o que foi dito acima da seguinte forma:

  • 0 = ∅ = {} Um conjunto vazio ou sem elementos.
  • 1 = 0 U {0} = {∅} = {{}} Um conjunto contendo um conjunto vazio.
  • 2 = 1 U {1} = {0,1} = {∅,{∅}} = {{},{{}}} Um Conjunto contendo 2 conjuntos vazios.
  • 3 = 2 U {2} = {0,1,2} = {∅,{∅},{∅,{∅}}} = {{},{{}},{{},{{}}} Um conjunto contendo 3 conjuntos vazios.
  • 4 = 3 U {3} = {0,1,2,3} = {∅,{∅},{∅,{∅}},{∅,{∅},{∅,{∅}}}} = {{},{{}},{{},{{}}},{{},{{}},{{},{{}}}} Um conjunto contendo 4 conjuntos vazios.
  • n = n−1 U {n−1} = {0, 1, …, n−1} = {{ }, {{ }}, …, {{ }, {{ }}, …}}, etc.

A conexão entre o conjunto vazio e o zero é ampla: na definição teórica padrão dos números naturais, os conjuntos são usados para modelar os números naturais. Neste contexto, 0 (zero) é modelado pelo conjunto vazio.

Divisão, multiplicação, Zero e Vazio

  • 1⋅0^3 = 1⋅0⋅0⋅0 = 0
  • 1⋅0^2 = 1⋅0⋅0 = 0
  • 1⋅0^1 = 1⋅0 = 0
  • 1⋅0^0 = 1

Pela definição de subconjunto, o conjunto vazio é um subconjunto de qualquer conjunto A. Ou seja, todo elemento x de ∅ pertence a A. De fato, se não fosse verdade que todos os elementos de ∅ estão em A, haveria pelo menos um elemento de ∅ que não está presente em A. Como não há elementos de ∅ de maneira alguma, não há nenhum elemento de ∅ que não esteja em A. Qualquer declaração que comece “para todo elemento de ∅ não está fazendo nenhuma reivindicação substantiva; é uma verdade vazia. Isso é parafraseado frequentemente como “tudo se aplica aos elementos do conjunto vazio”.

Operações com o conjunto vazio

Quando se fala da soma dos elementos de um conjunto finito, inevitavelmente se leva à convenção de que a soma dos elementos do conjunto vazio é zero. A razão para isso é que zero é o elemento de identidade para adição. Da mesma forma, o produto dos elementos do conjunto vazio deve ser considerado um, pois um é o elemento de identidade para multiplicação.

Soma Vazia

Na matemática a soma vazia é o resultado da adição de nenhum número, como em um somatório, por exemplo. Seu valor numérico é 0, o elemento neutro da adição. Este fato é especialmente útil na matemática discreta e na álgebra. Um caso simples, bastante conhecido é o caso em que:

0 × a = 0

isto é, a multiplicação de um número a qualquer por zero sempre é igual a zero, porque foram adicionadas zero cópias de a.

A soma vazia pode ser comparada com o produto vazio – a multiplicação de nenhum número – cujo valor não é zero, mas 1, o elemento neutro da multiplicação.

Por exemplo:

Soma {{1,2,3}} = Soma{{1,2}} + 3 = Soma {{1}} + 2 + 3 = Soma {{}} + 1 + 2 + 3 = 0 + 1 + 2 + 3

Em geral, define-se:

Soma {{}} = 0

e,

Produto vazio

Na matemática, um produto vazio ou produto nulo é o resultado da multiplicação de nenhum número. Seu valor numérico é 1, o elemento neutro da multiplicação, assim como o valor da soma vazia – o resultado da soma de nenhum número – é 0; isto é, o elemento neutro da adição. Este valor é necessário para a consistência da definição recursiva de um produto sobre uma sequência (ou conjunto, devido a propriedade comutativa da multiplicação).

Por exemplo:

Prod {{1,2,3}} = Prod{{1,2}} x 3 = Prod {{1}} x 2 x 3 = Prod {{}} x 1 x 2 x 3 = 1 x 1 x 2 x 3

Em geral, define-se:

Prod {{}} = 1

e,

Permutação Vazia

Em matemática, especialmente na álgebra abstrata e áreas relacionadas, uma permutação é uma bijeção, de um conjunto finito X nele mesmo. Em combinatória, o termo permutação tem um significado tradicional, que é usado para incluir listas ordenadas sem repetição, mas não exaustivas (portanto com menos elementos do que o máximo possível). O conceito de permutação expressa a ideia de que objetos distintos podem ser arranjados em inúmeras ordens diferentes.

Um desarranjo é uma permutação de um conjunto sem pontos fixos. O conjunto vazio pode ser considerado uma permutação de si mesmo, porque tem apenas uma permutação (0! = 1), e é vacuamente verdade que nenhum elemento (se pode encontrar no conjunto vazio) que mantém sua posição original.

Ex:

1! = 1, pois 1! = 1

0! = 1!/1 = 1

Leitura recomendada

Recomendo o livro ao lado: Medida, Integração e Real Análise, edição 04/2021 de Sheldon Axler, um excelente livro para a continuidade dos estudos em análise matemática. Ao ler o livro você se sentirá como Alice no País das Maravilhas da matemática. Ao clicar na capa do livro o Download começará. Compartilhe com todos seus amigos. Não há restrição de idade ou grau educacional. Saber ler em inglês é o suficiente para os estudos, boa leitura. {RC}.

Este livro é uma introdução à linguagem e aos métodos de prova padrão da matemática. É uma ponte dos cursos computacionais (como cálculo ou equações diferenciais) que os alunos normalmente encontram no primeiro ano de faculdade para uma perspectiva mais abstrata. Estabelece uma base para cursos mais teóricos: como topologia, análise e álgebra abstrata. Embora possa ser mais significativo para o aluno que tem algum cálculo, não há realmente nenhum (apenas saber ler em inglês) pré-requisito além da vontade de aprender matemática. Clique na capa e o download começará!{RC}.

Lembre-se, quando você afirmar: não há nada lá! O lá pode estar vazio { }. 😉

Referências Bibliográficas