Livro da prova (Book of Proof Third Edition) – Richard Hammack

O livro Book of Proof (Livro da Prova), é um dos melhores livros que já li sobre como compreender e aplicar a matemática do vazio { } na aquisição de conhecimento. Considero este livro o mais didático possível para compreender espaços e subespaços matemáticos – traz um conhecimento bem fundamentado sobre o estudo do conjunto vazio { }, que é obrigatório para a compreensão de sistemas complexos tais como: tecnologias atuais, estudos da simulação física, molecular, cerebral, redes neurais convolucionais biológicas e artificiais, cosmologia, física de partículas, mecânica quântica, inteligências artificiais, buracos negros, etc.

Clique na capa do livro e leia online ou em seu Smartphone. Se você usa Android, recomendo o Aplicativo Readera

{RC}

Segue exemplos do tratamento do conjunto vazio ∅ ou {}

Existe um conjunto especial que, embora pequeno, desempenha um grande papel. Um conjunto vazio ∅ ou {} é o conjunto que não possui elementos. Nós o representamos como ∅, então ∅ = {}. Sempre que você vir o símbolo ∅, ele representa {}. Observe que |∅| = 0. O conjunto vazio é o único conjunto cuja cardinalidade (número de elementos do conjunto) é zero. Tenha cuidado ao escrever o conjunto vazio. Não escreva {∅} quando você quer dizer ∅. Esses conjuntos não podem ser iguais porque ∅ não contém nada enquanto {∅} contém uma coisa – a saber – o conjunto vazio. Se isso é confuso, pense em um conjunto como uma caixa com coisas dentro; então, por exemplo, {2,4,6,8} é uma “caixa” contendo quatro números. O conjunto vazio ∅ = {} é uma caixa vazia. Em contraste, {∅} é uma caixa com uma caixa vazia dentro dela. Obviamente, há uma diferença: uma caixa vazia não é o mesmo que uma caixa com uma caixa vazia dentro dela. Assim ∅ ≠ {∅}. (Vocês também podem observar |∅| = 0 e ∣{∅}∣ = 1 como evidência adicional de que ∅ ≠ {∅}.

Aplicação prática

Exemplo 1

F = {∅,{∅},{{∅}}}

Como ler essa expressão: F é um conjunto que contém 3 coisas. Essa analogia com uma caixa pode nos ajudar a pensar sobre os conjuntos. O conjunto F = {∅,{∅},{{∅}}} pode parecer estranho, mas é realmente muito simples. Pense nisso como uma caixa contendo três coisas: uma caixa vazia, uma caixa contendo uma caixa vazia e uma caixa contendo uma caixa contendo uma caixa vazia. Assim a cardinalidade (contagem) |F| = 3. O conjunto G = {N, Z} é uma caixa contendo duas caixas, a caixa dos números naturais e a caixa dos números inteiros.

Exemplo 2

Suponha que A = {a} e B = {a, b}. Então, a diferença A∖B = {a} ∖ {a, b} = {} = ∅

A\B = {x ∈ A|x ∉ B } é o conjunto de elementos de A que não estão em B, também podemos denominar: o complementar de B em relação à A.

A diferença de A e B é o maior subconjunto de A que não contém nenhum dos elementos de B.

Como o conjunto vazio {} é um subconjunto de cada conjunto, esse é um resultado possível da subtração de dois conjuntos um do outro. Em particular, o resultado de A∖B ocorre, se e somente se A⊆B, ou (equivalentemente) se A∪B = A.

Supremo e Ínfimo do conjunto vazio ∅ ou { }

Um conjunto de números reais S é limitado acima se houver um número real M tal que x ≤ M para cada x ∈ S. Qualquer número M é chamado de limite superior para S. A definição de limitado abaixo é semelhante, e dizemos que S é limitado se for limitado acima e abaixo.

Um número x ∈ R é o supremo, ou menor limite superior de S, se x é um limite superior para S, e se y for qualquer limite superior para S, então x ≤ y.

Para o supremo, escolha um número real com a propriedade de que não existe um elemento do conjunto que o exceda. Como o conjunto está vazio, qualquer número real serve, agora comece a empurrar o número cada vez mais abaixo até que a condição seja violada. Como não há nenhum elemento do conjunto para violar a condição, você pode continuar empurrando-o cada vez mais para baixo indefinidamente – então o supremo é o “menor” valor possível −∞, raciocínio semelhante justifica que o mínimo seja + ∞. Isso é puramente heurístico.

Concordo que é contraintuitivo, é o único caso em que o supremo é menor que o ínfimo. No entanto, isso decorre da definição. Uma maneira de pensar sobre isso é que o supremo de um conjunto S é o que obtemos se pegarmos um ponto e arrastá-lo para baixo de ∞ até que ele não possa ir mais abaixo sem atingir S e o ínfimo é o que acontece se tomarmos um ponto e arrastá-lo de −∞ até que atinja S. Ou seja, meio que imaginamos S como um bloco intransitável de coisas cujo supremo e ínfimo, estão presos nas laterais dele. Mas se não há S, então não há bloqueio, e conforme prendemos esses pontos juntos, eles simplesmente passam um através do outro e continuam – eles sempre tiveram movimento para dentro, mas agora nada os impede, então eles acabam em −∞ e ∞ respectivamente, tanto quanto possível.

Uma vez que todo número real x é um limite superior para ∅, x ≥ sup ∅ para todo x ∈ R. Portanto o sup ∅ = −∞. Raciocínio semelhante fornece inf ∅ = + ∞.

Dizemos que x é o supremo de um conjunto S se x for o menor limite superior de S. Ou seja, x ≥ S para todos s ∈ S e x ≤ y para qualquer y que seja um limite superior de S. Portanto, se considerarmos ∅, todo x ∈ R é um limite superior de ∅. Portanto, o supremo de ∅ deve ser o min (R), que geralmente é −∞. Podemos raciocinar da mesma forma para o ínfimo.

Resumo de supremo e ínfimo do conjunto vazio = ∅ = { }

Considerando os reais estendidos, Re = R ∪ {− ∞, + ∞} podemos obter:

Se considerarmos ∅, todo x ∈ R um limite superior de ∅. Portanto, o supremo de ∅ deve ser o min (R), que geralmente é −∞.

Se considerarmos ∅, todo x ∈ R um limite inferior de ∅. Portanto, o ínfimo de ∅ deve ser o max (R), que geralmente é +∞.

sup ∅ = min ( { − ∞ , + ∞ } ∪ R ) = − ∞

inf ∅ = max ( { − ∞ , + ∞ } ∪ R ) = + ∞

Exemplo: ∅ ⊆ ∅

O conjunto vazio é um subconjunto de todos os conjuntos, ou seja ∅ ⊆ B para qualquer conjunto B.

Isso nos leva a um fato significativo: Se B for qualquer conjunto, então ∅ ⊆ B. Para ver por que isso é verdade, observe a frase da figura 1. Isso nos diz que: se ∅ não estivesse contido em B significaria que há pelo menos um elemento em ∅ que não é um elemento de B. Mas isso não pode ser verdade, porque não existem elementos em vazio.

Figura1. Se um conjunto finito possui n elementos, então ele possui 2^{n} subconjuntos, sendo obrigatório o ∅ fazer parte dele, ou seja, sua origem é o conjunto vazio { } = ∅.

{RC}.

Notas do autor: Richard Hammack

Meu objetivo ao escrever este livro foi criar um livro didático de alta qualidade. O livro pode ser baixado em formato PDF gratuitamente, e a versão impressa custa consideravelmente menos do que livros tradicionais comparáveis.

Nesta terceira edição, o Capítulo 3 (sobre contagem) foi expandido, e um novo capítulo sobre provas de cálculo foi adicionado. Novos exemplos e exercícios foram adicionados por toda parte. Minhas decisões em relação às revisões foram guiadas por comentários da Amazon e e-mails de leitores, e estou grato por todos os comentários.

Tenho me esforçado para garantir que a terceira edição seja compatível com a segunda. Os exercícios não foram reordenados, embora alguns tenham sido editados para maior clareza e alguns novos foram anexados. (A única exceção é que a reorganização do Capítulo 3 mudou alguns exercícios.) O capítulo sequenciamento é idêntico entre as edições, com uma exceção: o final do capítulo sobre cardinalidade tornou-se o capítulo 14, a fim de abrir caminho para o novo Capítulo 13 sobre provas de cálculo. Houve uma ligeira renumeração das seções nos capítulos 10 e 11, mas a numeração dos exercícios dentro das seções não foi alterada.

O núcleo deste livro é uma expansão e refinamento das notas de aula I desenvolvida durante o ensino de cursos de provas ao longo dos últimos 18 anos na Virgínia Commonwealth University (uma grande universidade estadual) e Randolph-Macon College (uma pequena faculdade de artes liberais). Eu encontrei as necessidades desses dois públicos quase idênticos, e escrevi este livro para eles. Mas estou atento a uma audiência maior. Eu acredito que este livro é adequado para quase todos os alunos de graduação em matemática.

O não entendimento do Vazio { } causa uma grave falha perceptiva: a crença em inexistentes, e como essa crença é nula (PCI = nulo), as pessoas que não sabem que são simulações de seus cérebros e pensam que existe algo oculto na natureza – não importa com que designação ou afirmação retratem isso – provocará uma desilusão e involução devastadora em suas vidas.

A não percepção do Vazio { } pode provocar a nulidade em sua simulação.

{RC}.

Créditos:

Richard Hammack

Lawrenceville, Virgínia – Estados Unidos

14 de fevereiro de 2018.

Referências bibliográficas

Book of Proof Third Edition – Richard Hammack

Introduction to Real Analysis – Christopher Heil

https://math.stackexchange.com/questions/1147371/what-is-inf-emptyset-and-sup-emptysethttps://pt.wikipedia.org/wiki/Conjunto_vazio

3 comentários em “Livro da prova (Book of Proof Third Edition) – Richard Hammack

    1. Caro amigo Sergio

      O livro Book of Proof é exatamente a matemática de nível mais básico e conceitual – este estudo deveria ser parte obrigatória no sistema básico educacional primário e secundário aqui no Brasil. O não entendimento do Vazio { }, causa uma dificuldade muitas vezes intransponível para a compreensão dos temas complexos atuais. Abs.

      Curtir

Deixe um comentário

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair /  Alterar )

Foto do Google

Você está comentando utilizando sua conta Google. Sair /  Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair /  Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair /  Alterar )

Conectando a %s

Este site utiliza o Akismet para reduzir spam. Saiba como seus dados em comentários são processados.