Arquivo da categoria: Buracos negros

O lado escuro da cosmologia

Os componentes do nosso Universo. A energia escura compreende 69% da densidade de massa do universo, a matéria escura é composta por 25% e, a matéria atômica "comum" torna-se 5%. Três tipos de neutrinos, no mínimo, 0,1%, a radiação cósmica de fundo torna-se 0,01%, e os buracos negros compreendem pelo menos 0,005%. Crédito: Science/AAAS

Os componentes do nosso Universo. A energia escura compreende 69% da densidade de massa do universo, a matéria escura é composta por 25% e, a matéria atômica “comum” torna-se 5%. Três tipos de neutrinos, no mínimo, 0,1%, a radiação cósmica de fundo torna-se 0,01%, e os buracos negros compreendem pelo menos 0,005%. Crédito: Science/AAAS

É uma bela teoria: o modelo padrão da cosmologia descreve o universo usando apenas seis parâmetros. Mas também é estranho. O modelo prevê que a matéria escura e energia escura – duas entidades misteriosas – que nunca foram detectadas compõem 95% do universo, deixando apenas 5% composto por matéria comum, tão essencial para a nossa existência.

Em um artigo da revista Science no início do mês de março, o astrofísico de Princeton David Spergel analisa como os cosmólogos tiveram certeza de que estamos rodeados de matéria e energia que não podemos ver.

As observações de galáxias, supernovas, e a temperatura do universo, entre outras coisas, levaram os pesquisadores a concluir que o universo é mais uniforme e plano, mas está em expansão devido a um fenômeno intrigante chamada energia escura. A taxa de expansão aumenta ao longo do tempo, contrariando a força de atração da gravidade. Esta última observação, diz Spergel, implica que se você jogar uma bola para cima vai vê-la começar acelerar para longe de você.

Uma série de experimentos para detectar a matéria escura e energia escura estão em andamento, e alguns pesquisadores já afirmaram ter encontrado partículas de matéria escura, embora os resultados sejam controversos. Novas descobertas esperadas nos próximos anos a partir do LHC – Large Hadron Collider (grande colisor de hádrons), o mais poderoso acelerador de partículas do mundo, poderia fornecer evidências para uma teoria proposta, a supersimetria, que poderiam explicar as partículas escuras.

Mas explicar a energia escura, e por que o universo está se acelerando, é um problema mais difícil. Durante a próxima década, potentes telescópios ficarão online para mapear a estrutura do universo e detectar a distribuição da matéria ao longo dos últimos 10 bilhões de anos, oferecendo novos insights sobre a fonte de aceleração cósmica.

No entanto, observações sozinhas provavelmente não serão suficientes, de acordo com Spergel. A plena compreensão exigirá novas ideias em física, talvez até uma nova teoria da gravidade, possivelmente incluindo dimensões extras, Spergel escreve. “Nós provavelmente vamos precisar de uma nova ideia tão profunda como a relatividade geral para explicar esses fenômenos.”

Quando isso acontecer, a nossa compreensão do lado escuro da cosmologia deixará de acelerar para longe de nós.

Segue abaixo uma animação de como o LHC trabalha

Fonte: Phys.org

O universo a partir do nada (A Universe From Nothing) – Lawrence Krauss

Michael Shermer

Por que existe algo em vez de nada? Essa é uma daquelas questões profundas difíceis de responder. Ao longo de milênios, os humanos simplesmente disseram “Foi Deus quem fez”: um criador precedeu o Universo e o criou a partir do nada. Mas isso levanta a pergunta de quem criou Deus – e se Deus não precisar de um criador, a lógica dita que o Universo também não precisa. A ciência lida com causas naturais (não sobrenaturais) e por isso permite várias maneiras de explorar de onde é que o “algo” veio.

Universos múltiplos

Há muitas hipóteses de multiversos que nos mostram como o Universo poderia ter nascido a partir de outro. Nosso Universo pode ser, por exemplo, apenas um entre vários universos-bolha com diferentes leis naturais, que produziriam estrelas, com algumas delas colapsando em buracos negros e tendo peculiaridades que dariam origem a novos universos – de maneira similar à singularidade que os físicos acreditam ter dado origem ao Big Bang.

Teoria-M

No livro The Grand Design (O grande projeto), escrito em 2010 com Leonard Mlodinow, Stephen Hawking elege a “Teoria-M” (uma extensão da teoria de cordas que inclui 11 dimensões) como “a única candidata à teoria completa do universo. Se for finita – e isso ainda terá que ser provado – será o modelo de um universo que cria a si mesmo”.

Origem a partir da espuma quântica

a-universe-from-nothing

Clique na imagem para download em Epub! (divulgação).

O “nada” do vácuo espacial na verdade é feito de turbulências espaço-temporais subatômicas em distâncias extremamente pequenas, mensuráveis na escala de Planck – a distância na qual a estrutura do espaço-tempo é dominada pela gravidade quântica. Nessa escala, o princípio da incerteza de Heisenberg permite que a energia decaia brevemente em partículas e antipartículas, produzindo “algo” a partir do “nada”. O nada é instável. Em seu novo livro, A Universe from Nothing, o cosmólogo Laurence M. Kraus tenta ligar a física quântica à teoria da relatividade geral de Einstein para explicar a origem de um Universo dessa maneira: “Na gravidade quântica, os universos podem aparecer espontaneamente, e de fato sempre o farão. Esses universos não precisam estar vazios, mas podem conter matéria e radiação desde que sua energia total, incluindo a energia negativa associada à gravidade (contrabalanceando a energia positiva da matéria), seja zero”. Além disso, “para universos fechados que podem ser criados a partir desses mecanismos para durar mais do que intervalos infinitesimais de tempo, algo como a inflação se faz necessário”. As observações mostram que o Universo é de fato plano (há matéria suficiente para desacelerar sua expansão, mas não detê-la), tem energia total zero e passou por uma rápida inflação, ou expansão, logo após o Big Bang, como descrito pela cosmologia inflacionária. “A gravidade quântica não apenas parece permitir que universos sejam criados a partir do nada – ou seja, da ausência de espaço e tempo –, ela pode precisar que seja assim. O ‘nada’ – nesse caso a ausência de espaço, de tempo, de tudo! – é instável”.

As outras hipóteses também são testáveis. A ideia de que novos universos possam surgir de buracos negros em colapso pode ser esclarecida a partir de conhecimentos adicionais sobre as propriedades de buracos negros, que estão sendo estudadas. Outros universos-bolha podem ser detectados nas sutis variações de temperatura da radiação cósmica de fundo deixada pelo Big Bang de nosso Universo. A Sonda Anisotrópica de Micro-ondas Wilkinson (WMAP, em inglês) está coletando dados sobre essa radiação. Além disso, o Observatório de Ondas Gravitacionais por Interferômetro Laser (LIGO, em inglês) foi projetado para detectar ondas gravitacionais excepcionalmente fracas. Se existem outros universos, talvez rugas em ondas gravitacionais indiquem sua presença. Talvez a gravidade seja uma força relativamente tão fraca (se comparada ao eletromagnetismo e às forças nucleares) porque parte dela “vaza” para outros universos. Mesmo que Deus (segundo os teólogos) seja visto como o criador das leis da Natureza que fizeram o Universo (ou multiverso) surgir a partir do nada – se essas leis forem determinísticas –, então Deus não teve escolha na criação do Universo, e por isso não foi necessário. De qualquer forma, por que deveríamos nos voltar para o sobrenatural quando nossa compreensão do natural ainda está em seus estágios iniciais? Seríamos sábios ao seguir esse princípio cético: antes de dizer que algo não é deste mundo, certifique-se de que não seja deste mundo.

Créditos: Scientific American Brasil

Fonte: Kikass.to

O maior Buraco Negro e Quasar – descobertos até o presente momento

A Galáxia NGC1277 hospeda o maior Buraco Negro já detectado. (divulgação).

A Galáxia NGC1277 hospeda o maior Buraco Negro já detectado. (divulgação).

A galáxia NGC 1277, localizada 220 milhões de anos-luz da Terra em direção à constelação de Perseu, tem uma originalidade: é quase totalmente ocupada por um Buraco Negro. E mais: segundo resultados hoje publicados na revista Nature, também não se trata de um buraco negro qualquer, mas do maior buraco negro já descoberto.

O “monstro” foi descoberto com o Telescópio Hobby-Eberly (HET), do Observatório McDonald da Universidade do Texas (EUA), um dos grandes telescópios óticos mundiais, cujo espelho mede 9,2 metros de diâmetro.
Para tentar perceber a forma como as galáxias e os buracos negros que residem no seu centro se formam e evoluem em conjunto, Remco van den Bosch e colegas estudam as 800 galáxias mais densas da nossa “vizinhança” cósmica. “Atualmente, há três mecanismos completamente diferentes para explicar a relação entre a massa dos buracos negros e as propriedades das galáxias hospedeiras”, diz Van den Bosch em comunicado da Universidade do Texas. “Mas ainda não sabemos qual é a melhor dessas três teorias.”

Os cientistas combinaram dados recolhidos pelo HET com medições da luminosidade da NGC 1277 feitas a partir de fotografias tiradas pelo telescópio espacial Hubble e com modelos matemáticos simulados num supercomputador. E concluíram que a massa do buraco negro em questão corresponde a 17 bilhões de vezes à massa do Sol.

O resultado surpreendeu-os porque a NGC 1277 é uma galáxia compacta e pequena, de massa e tamanho, dez vezes inferiores aos da Via Láctea. Mas, apesar disso, a largura do buraco negro é mais de 11 vezes superior à órbita de Netuno à volta do Sol, representando 14% da massa total da galáxia – e 59% da massa do seu grupo central de estrelas. Um resultado que contradiz fortemente com o habitual, em que a massa do buraco negro central representa apenas 0,1% da massa total da galáxia hospedeira.

“Esta galáxia é mesmo exótica”, diz o co-autor Karl Gebhardt, citado pelo mesmo documento. “É quase só buraco negro. A sua massa é muito maior do que o previsto, o que nos leva a pensar que o processo físico de crescimento dos buracos negros nas galáxias muito densas é diferente.”

O Quasar SDSS-J1106+1939 é o mais energético até o presente momento.  (divulgação).

O Quasar SDSS-J1106+1939 é o mais energético até o presente momento. (divulgação).

Entretanto, utilizando o Very Large Telescope (VLT) do Observatório Europeu do Sul (ESO), situado no Monte Paranal, no Chile, Nahum Arav e os seus colegas, da Universidade Técnica da Virgínia (EUA), anunciaram ontem a detecção de outro “monstro” cósmico: o quasar mais energético já detectado.

Os quasares são regiões compactas e extremamente luminosas – em forma de eixo –, situadas no centro das galáxias superdensas, à volta do buraco negro central, cuja emissão de energia é perpendicular ao disco galáctico. E apesar de os buracos negros “sugarem” grande parte da matéria envolvente, muitos quasares ejetam enormes quantidades de matéria para o exterior – fenômeno que se imagina ter um grande impacto na evolução da galáxia hospedeira. Só que, até agora, explica o ESO em comunicado, nunca tinha sido encontrado um quasar com os altos níveis de energia de ejeção previstos por esta teoria.

Os cientistas descobriram um quasar, SDSS-J1106+1939, cujo ritmo de emissão de energia é, diz Arav, “no mínimo equivalente a dois bilhões de vezes a emissão de energia do Sol e cerca de 100 vezes maior do que a produção energética total da Via Láctea”. O quasar “cospe” cerca de 400 vezes a massa do Sol por ano, à velocidade de 8000 quilômetros por segundo. “Há dez anos que procurávamos uma coisa destas e é muito excitante termos finalmente encontrado uma ejeção tão monstruosa como previa a teoria!”

Fonte: Público Ciência

Os dois maiores buracos negros do universo são descobertos pelos cientistas

Ilustração mostra estrelas em movimento em uma galáxia elíptica, que tem em seu centro um buraco negro supermassivo. Fonte: Nasa

Um grupo de cientistas descobriu os dois maiores buracos negros conhecidos até o momento, com uma massa quase 10 bilhões de vezes superior à do Sol, informa um artigo publicado nesta segunda-feira pela periódico cientifíco Nature.

Esses buracos negros, localizados em duas enormes galáxias elípticas a cerca de 270 milhões de anos-luz da Terra, são muito maiores do que se previa por meio de deduções dos atributos das galáxias anfitriãs.

Segundo os especialistas, liderados por Chung-Pei Ma, da Universidade da Califórnia, nos Estados Unidos, a descoberta sugere que os processos que influenciam no crescimento das galáxias grandes e seus buracos negros diferem dos que afetam as galáxias pequenas.

Os cientistas acreditam que todas as galáxias maciças com componente esferoidal abrigam em seus centros buracos negros gigantescos. As oscilações de luminosidade e brilho identificadas nos quasares do universo sugerem ainda que alguns deles teriam sido alimentados por buracos negros com massas 10 bilhões de vezes superiores à do Sol.

No entanto, o maior buraco negro conhecido até então, situado na gigantesca galáxia elíptica Messier 87, tinha uma massa de apenas 6,3 bilhões de massas solares.

Os buracos negros são difíceis de serem detectados porque sua poderosa gravidade os absorve por completo, incluindo a luz e outras radiações que poderiam revelar sua presença.

Os cientistas avaliaram os dados de duas galáxias vizinhas à Messier 87 – NGC 3842 e NGC 4889 – e concluíram que nelas havia buracos negros supermassivos.

Os cientistas usaram o telescópio Gemini do Havaí, adaptado com lentes especiais que permitem detectar o movimento irregular de estrelas que se movimentam perto dos buracos negros e que são absorvidas por eles.

Os pesquisadores constataram que a NGC 3842 abriga em seu centro um buraco negro com uma massa equivalente a 9,7 milhões de massas solares, enquanto, na NGC 4889, há outro com uma massa igual ou superior.

Esses buracos negros teriam um horizonte de fatos, a região na qual nada, nem sequer a luz, pode escapar de sua atração, cerca de sete vezes maior do que todo o sistema solar.

Segundo os especialistas, o enorme tamanho dos buracos se deve à sua habilidade para devorar não só planetas e estrelas, mas também pequenas galáxias, um processo que teria sido produzido ao longo de milhões de anos.

Fonte:Último segundo