O que é espaço e subespaço? Em sentido amplo!

Ilustração de um buraco negro errante movendo-se rapidamente através de uma nuvem densa de gás. O gás é arrastado pela gravidade do buraco negro formando uma corrente estreita. Crédito: Keio University. Clique na imagem para acessar o artigo completo da Science.

Espaço e subespaço é a demarcação do conhecimento verdadeiro, justificado e válido, não é possível existir algo que esteja fora de algum espaço ou subespaço, isso inclui a fenomenologia da mecânica quântica. Em matemática espaços são definidos em termos primitivos. Em física e cosmologia espaços são projeções vetoriais e escalares em múltiplas dimensões.

Eu defino espaços e subespaços como: possibilidades existenciais seja no sentido: matemático, físico, filosófico ou conceitual.

{RC}

Em nosso universo, para que algo (qualquer coisa) exista é necessário que deva estar em algum local ou não local; isto é, precisaria residir em algum espaço ou subespaço.

Espaço físico

Por espaço físico, quero dizer o espaço revelado a nós por artefatos de medição como réguas, antenas e aparelhos avançados de medição: radiotelescópios, satélites de GPS, microscópios eletrônicos, telescópios em terra ou em órbita, etc. O espaço físico é definido de forma objetiva; isto é, as propriedades do espaço físico são amplamente independentes do observador.

Galáxia de Andrômeda M31 – Créditos: Adam Evans – the Andromeda Galaxy (now with h-alpha) Wikipedia. Clique na imagem para vê-la em alta resolução.

Espaço visual

O espaço visual é definido de forma subjetiva; isto é, as propriedades do espaço visual podem depender criticamente de certos aspectos do observador, como localização no espaço físico, condições experimentais e a capacidade cognitiva perceptiva do observador (vieses e deficiências visuais). Por exemplo: é comum aos pilotos de aviões virem OVNIs (objetos voadores não identificados), isso não significa que sejam naves extraterrestres (até o momento inexistentes).

Espaço-tempo

Na física, espaço-tempo é o sistema de coordenadas utilizado como base para o estudo da relatividade restrita e relatividade geral. O tempo e o espaço tridimensional são concebidos, em conjunto, como uma única variedade de quatro dimensões a que se dá o nome de espaço-tempo. Um ponto, no espaço-tempo, pode ser designado como um “acontecimento”. Cada acontecimento tem quatro coordenadas (t, x, y, z); ou, em coordenadas angulares, t, r, θ, e φ que ditam o local e a hora em que ele ocorreu, ocorre ou ocorrerá.

Simulação de espaço-tempo extremo (SXS) – fusão de dois buracos negros – Crédito: Projet www.black-holes.org – Caltech

A medição de um pulsar detecta arrasto de quadro

Concepção artística do arrasto de quadro onde duas estrelas giram e torcem espaço e tempo. Crédito: Mark Myers, OzGrav ARC Centre of Excellence

O arrasto de quadro é um fenômeno previsto na relatividade geral, pelo qual uma massa em rotação arrasta o espaço-tempo circundante com ela. O físico em radioastronomia Venkatraman Krishnan do Instituto Max Planck, analisou observações temporais do pulsar PSR J1141-6545, um jovem pulsar em uma órbita binária com uma anã branca. A modelagem dos tempos de chegada dos pulsos de rádio mostrou um desvio de longo prazo nos parâmetros orbitais. Depois de considerar as possíveis contribuições para essa deriva, eles concluíram que ela é dominada pelo arrastamento de quadros (o efeito Lense-Thirring) da anã branca que gira rapidamente. Essas observações verificam uma previsão da relatividade geral e fornecem restrições sobre a história evolutiva do sistema binário.

Espaço Virtual

É a infraestrutura cibernética que conhecemos pelo nome de Internet.

Espaço Matemático

Na Matemática os espaços/subespaços são os elementos que determinam as relações, funções, conjuntos, grupos e toda a abstração necessária para que exista coerência no uso da matemática. Exemplo:

Espaço Vetorial

Adição vetorial e multiplicação por escalar: um vetor v (azul) é adicionado a outro vetor w (vermelho, ilustração superior). Na imagem inferior, w está esticado por um fator de 2, acarretando a soma v + 2w.

Um espaço vetorial (também chamado de espaço linear) é uma coleção de objetos chamados vetores, que podem ser somados uns aos outros e multiplicados “escalonados” por números, denominados escalares.

Espaço da Mecânica e Física Quântica

São os mais complexos espaços e subespaços que conhecemos, correspondem ao tratamento da física de partículas. Todas as partículas subatômicas: bosons de higgs, fótons, neutrinos, elétrons, quarks, etc., residem nos subespaços quânticos cujos efeitos podem ser tratados e estudados com a utilização da matemática avançada da mecânica quântica.

Exemplo: Esfera de Block

Esfera de Bloch representando um qubit Wikipedia.

Na mecânica quântica e computação, a esfera de Bloch é uma representação geométrica do espaço de estado puro de um sistema mecânico quântico de dois níveis (qubit), em homenagem ao físico Felix Bloch. Portanto, Um bit quântico, ou qubit é uma unidade de informação quântica. A mecânica quântica é matematicamente formulada no espaço de Hilbert ou no espaço de Hilbert projetivo. Os estados puros de um sistema quântico correspondem aos subespaços unidimensionais do espaço de Hilbert correspondente (ou os “pontos” do espaço de Hilbert projetivo). Para um espaço de Hilbert bidimensional, o espaço de todos esses estados é a linha projetiva complexa ℂℙ1.

Qual a precisão das medidas espaciais e subespaciais hoje?

Essas medidas hoje possuem a máxima precisão possível dentro das perspectivas de medição utilizadas pela ciência. As réguas de luz utilizadas pelos laboratórios LIGO, conseguem uma precisão subespacial da ordem de 1/10.000 do núcleo atômico.

Ilustração de um átomo de hélio, na qual está representado o núcleo (em rosa) e a distribuição da nuvem de elétrons (em preto). O núcleo (canto sup. dir.) no hélio-4 é simétrico e assemelha-se muito à nuvem de elétrons, embora em núcleos mais complexos isto nem sempre se verifique. A escala gráfica corresponde a um ångström (10−10 m ou 100 picômetros ou ainda 1/1000.000.000.000 do metro).

Todos os nossos sistemas de medição hoje são subespaciais

Nesta imagem podemos ver a representação das 7 unidades fundamentais do sistema internacional de unidades – todas elas são subespaciais. Clique na imagem para baixar o manual explicativo sobre o novo SI – Sistema Internacional de Unidades. Em vigor desde 20 de maio de 2019. Assista ao vídeo explicativo abaixo.

A nova medida do Metro (1 dividido pelo segundo luz)

Hoje 1 metro vale = 1/SL (uma unidade subespacial do segundo luz). Corresponde ao espaço linear percorrido pela luz no vácuo durante um intervalo de tempo correspondente a 1/299 792 458 de segundo (299 792 458 m/s-1, e que continua sendo o metro padrão na perspectiva dos avanços científicos atuais.

Segundo-luz é uma subunidade de comprimento utilizada em astronomia e corresponde à distância percorrida pela luz no vácuo em um segundo. Seu plural é segundos-luz. Para se calcular o valor de 1 segundo-luz em quilômetros é necessário saber que a velocidade da luz no vácuo é de 299.792.458 metros por segundo (m/s) e que o tempo utilizado na definição é o segundo. Assim temos que o segundo-luz vale 299.792.458 metros (aproximadamente 300 mil quilômetros); ou ainda 0,002 UA (Unidades Astronômicas).

Obs: quando a constante de medição contiver um expoente negativo, significa unidade subespacial.

Os benefícios para humanidade com a detecção das Ondas Gravitacionais

Na física, as ondas gravitacionais são ondulações na curvatura do espaço-tempo que se propagam como ondas, viajando para o exterior a partir da fonte. Elas são incrivelmente rápidas, viajam à velocidade da luz (299 792 458 quilômetros por segundo) e espremem e esticam qualquer coisa em seu caminho ao passarem. O Observatório de Onda Gravitacional de Interferômetro de Laser (LIGO), conta com ajuda de mais de 1 000 cientistas colaboradores, a construção de ambos observatórios um em Washington e o outro na Louisiana custaram cerca de US$ 1 bilhão e foram financiados pela National Science Foundation. Um novo ramo da ciência nasceu com esta descoberta, a Astronomia de Ondas Gravitacionais.

Os benefícios para a humanidade são ilimitados, agora sabemos com extrema precisão, como funcionam os espaços e subespaços e principalmente, validamos o último legado de Albert Einstein, sua teoria da relatividade geral se tornou completa. {RC}.

Referências bibliográficas

O lado escuro da cosmologia

Os componentes do nosso Universo. A energia escura compreende 69% da densidade de massa do universo, a matéria escura é composta por 25% e, a matéria atômica "comum" torna-se 5%. Três tipos de neutrinos, no mínimo, 0,1%, a radiação cósmica de fundo torna-se 0,01%, e os buracos negros compreendem pelo menos 0,005%. Crédito: Science/AAAS
Os componentes do nosso Universo. A energia escura compreende 69% da densidade de massa do universo, a matéria escura é composta por 25% e, a matéria atômica “comum” torna-se 5%. Três tipos de neutrinos, no mínimo, 0,1%, a radiação cósmica de fundo torna-se 0,01%, e os buracos negros compreendem pelo menos 0,005%. Crédito: Science/AAAS

É uma bela teoria: o modelo padrão da cosmologia descreve o universo usando apenas seis parâmetros. Mas também é estranho. O modelo prevê que a matéria escura e energia escura – duas entidades misteriosas – que nunca foram detectadas compõem 95% do universo, deixando apenas 5% composto por matéria comum, tão essencial para a nossa existência.

Em um artigo da revista Science no início do mês de março, o astrofísico de Princeton David Spergel analisa como os cosmólogos tiveram certeza de que estamos rodeados de matéria e energia que não podemos ver.

As observações de galáxias, supernovas, e a temperatura do universo, entre outras coisas, levaram os pesquisadores a concluir que o universo é mais uniforme e plano, mas está em expansão devido a um fenômeno intrigante chamada energia escura. A taxa de expansão aumenta ao longo do tempo, contrariando a força de atração da gravidade. Esta última observação, diz Spergel, implica que se você jogar uma bola para cima vai vê-la começar acelerar para longe de você.

Uma série de experimentos para detectar a matéria escura e energia escura estão em andamento, e alguns pesquisadores já afirmaram ter encontrado partículas de matéria escura, embora os resultados sejam controversos. Novas descobertas esperadas nos próximos anos a partir do LHC – Large Hadron Collider (grande colisor de hádrons), o mais poderoso acelerador de partículas do mundo, poderia fornecer evidências para uma teoria proposta, a supersimetria, que poderiam explicar as partículas escuras.

Mas explicar a energia escura, e por que o universo está se acelerando, é um problema mais difícil. Durante a próxima década, potentes telescópios ficarão online para mapear a estrutura do universo e detectar a distribuição da matéria ao longo dos últimos 10 bilhões de anos, oferecendo novos insights sobre a fonte de aceleração cósmica.

No entanto, observações sozinhas provavelmente não serão suficientes, de acordo com Spergel. A plena compreensão exigirá novas ideias em física, talvez até uma nova teoria da gravidade, possivelmente incluindo dimensões extras, Spergel escreve. “Nós provavelmente vamos precisar de uma nova ideia tão profunda como a relatividade geral para explicar esses fenômenos.”

Quando isso acontecer, a nossa compreensão do lado escuro da cosmologia deixará de acelerar para longe de nós.

Segue abaixo uma animação de como o LHC trabalha

Fonte: Phys.org

O universo a partir do nada (A Universe From Nothing) – Lawrence Krauss

Michael Shermer

Por que existe algo em vez de nada? Essa é uma daquelas questões profundas difíceis de responder. Ao longo de milênios, os humanos simplesmente disseram “Foi Deus quem fez”: um criador precedeu o Universo e o criou a partir do nada. Mas isso levanta a pergunta de quem criou Deus – e se Deus não precisar de um criador, a lógica dita que o Universo também não precisa. A ciência lida com causas naturais (não sobrenaturais) e por isso permite várias maneiras de explorar de onde é que o “algo” veio.

Universos múltiplos

Há muitas hipóteses de multiversos que nos mostram como o Universo poderia ter nascido a partir de outro. Nosso Universo pode ser, por exemplo, apenas um entre vários universos-bolha com diferentes leis naturais, que produziriam estrelas, com algumas delas colapsando em buracos negros e tendo peculiaridades que dariam origem a novos universos – de maneira similar à singularidade que os físicos acreditam ter dado origem ao Big Bang.

Teoria-M

No livro The Grand Design (O grande projeto), escrito em 2010 com Leonard Mlodinow, Stephen Hawking elege a “Teoria-M” (uma extensão da teoria de cordas que inclui 11 dimensões) como “a única candidata à teoria completa do universo. Se for finita – e isso ainda terá que ser provado – será o modelo de um universo que cria a si mesmo”.

Origem a partir da espuma quântica

a-universe-from-nothing
Clique na imagem para download em Epub! (divulgação).

O “nada” do vácuo espacial na verdade é feito de turbulências espaço-temporais subatômicas em distâncias extremamente pequenas, mensuráveis na escala de Planck – a distância na qual a estrutura do espaço-tempo é dominada pela gravidade quântica. Nessa escala, o princípio da incerteza de Heisenberg permite que a energia decaia brevemente em partículas e antipartículas, produzindo “algo” a partir do “nada”. O nada é instável. Em seu novo livro, A Universe from Nothing, o cosmólogo Laurence M. Kraus tenta ligar a física quântica à teoria da relatividade geral de Einstein para explicar a origem de um Universo dessa maneira: “Na gravidade quântica, os universos podem aparecer espontaneamente, e de fato sempre o farão. Esses universos não precisam estar vazios, mas podem conter matéria e radiação desde que sua energia total, incluindo a energia negativa associada à gravidade (contrabalanceando a energia positiva da matéria), seja zero”. Além disso, “para universos fechados que podem ser criados a partir desses mecanismos para durar mais do que intervalos infinitesimais de tempo, algo como a inflação se faz necessário”. As observações mostram que o Universo é de fato plano (há matéria suficiente para desacelerar sua expansão, mas não detê-la), tem energia total zero e passou por uma rápida inflação, ou expansão, logo após o Big Bang, como descrito pela cosmologia inflacionária. “A gravidade quântica não apenas parece permitir que universos sejam criados a partir do nada – ou seja, da ausência de espaço e tempo –, ela pode precisar que seja assim. O ‘nada’ – nesse caso a ausência de espaço, de tempo, de tudo! – é instável”.

As outras hipóteses também são testáveis. A ideia de que novos universos possam surgir de buracos negros em colapso pode ser esclarecida a partir de conhecimentos adicionais sobre as propriedades de buracos negros, que estão sendo estudadas. Outros universos-bolha podem ser detectados nas sutis variações de temperatura da radiação cósmica de fundo deixada pelo Big Bang de nosso Universo. A Sonda Anisotrópica de Micro-ondas Wilkinson (WMAP, em inglês) está coletando dados sobre essa radiação. Além disso, o Observatório de Ondas Gravitacionais por Interferômetro Laser (LIGO, em inglês) foi projetado para detectar ondas gravitacionais excepcionalmente fracas. Se existem outros universos, talvez rugas em ondas gravitacionais indiquem sua presença. Talvez a gravidade seja uma força relativamente tão fraca (se comparada ao eletromagnetismo e às forças nucleares) porque parte dela “vaza” para outros universos. Mesmo que Deus (segundo os teólogos) seja visto como o criador das leis da Natureza que fizeram o Universo (ou multiverso) surgir a partir do nada – se essas leis forem determinísticas –, então Deus não teve escolha na criação do Universo, e por isso não foi necessário. De qualquer forma, por que deveríamos nos voltar para o sobrenatural quando nossa compreensão do natural ainda está em seus estágios iniciais? Seríamos sábios ao seguir esse princípio cético: antes de dizer que algo não é deste mundo, certifique-se de que não seja deste mundo.

Créditos: Scientific American Brasil

Fonte: Kikass.to

O maior Buraco Negro e Quasar – descobertos até o presente momento

A Galáxia NGC1277 hospeda o maior Buraco Negro já detectado. (divulgação).
A Galáxia NGC1277 hospeda o maior Buraco Negro já detectado. (divulgação).

A galáxia NGC 1277, localizada 220 milhões de anos-luz da Terra em direção à constelação de Perseu, tem uma originalidade: é quase totalmente ocupada por um Buraco Negro. E mais: segundo resultados hoje publicados na revista Nature, também não se trata de um buraco negro qualquer, mas do maior buraco negro já descoberto.

O “monstro” foi descoberto com o Telescópio Hobby-Eberly (HET), do Observatório McDonald da Universidade do Texas (EUA), um dos grandes telescópios óticos mundiais, cujo espelho mede 9,2 metros de diâmetro.
Para tentar perceber a forma como as galáxias e os buracos negros que residem no seu centro se formam e evoluem em conjunto, Remco van den Bosch e colegas estudam as 800 galáxias mais densas da nossa “vizinhança” cósmica. “Atualmente, há três mecanismos completamente diferentes para explicar a relação entre a massa dos buracos negros e as propriedades das galáxias hospedeiras”, diz Van den Bosch em comunicado da Universidade do Texas. “Mas ainda não sabemos qual é a melhor dessas três teorias.”

Os cientistas combinaram dados recolhidos pelo HET com medições da luminosidade da NGC 1277 feitas a partir de fotografias tiradas pelo telescópio espacial Hubble e com modelos matemáticos simulados num supercomputador. E concluíram que a massa do buraco negro em questão corresponde a 17 bilhões de vezes à massa do Sol.

O resultado surpreendeu-os porque a NGC 1277 é uma galáxia compacta e pequena, de massa e tamanho, dez vezes inferiores aos da Via Láctea. Mas, apesar disso, a largura do buraco negro é mais de 11 vezes superior à órbita de Netuno à volta do Sol, representando 14% da massa total da galáxia – e 59% da massa do seu grupo central de estrelas. Um resultado que contradiz fortemente com o habitual, em que a massa do buraco negro central representa apenas 0,1% da massa total da galáxia hospedeira.

“Esta galáxia é mesmo exótica”, diz o co-autor Karl Gebhardt, citado pelo mesmo documento. “É quase só buraco negro. A sua massa é muito maior do que o previsto, o que nos leva a pensar que o processo físico de crescimento dos buracos negros nas galáxias muito densas é diferente.”

O Quasar SDSS-J1106+1939 é o mais energético até o presente momento.  (divulgação).
O Quasar SDSS-J1106+1939 é o mais energético até o presente momento. (divulgação).

Entretanto, utilizando o Very Large Telescope (VLT) do Observatório Europeu do Sul (ESO), situado no Monte Paranal, no Chile, Nahum Arav e os seus colegas, da Universidade Técnica da Virgínia (EUA), anunciaram ontem a detecção de outro “monstro” cósmico: o quasar mais energético já detectado.

Os quasares são regiões compactas e extremamente luminosas – em forma de eixo –, situadas no centro das galáxias superdensas, à volta do buraco negro central, cuja emissão de energia é perpendicular ao disco galáctico. E apesar de os buracos negros “sugarem” grande parte da matéria envolvente, muitos quasares ejetam enormes quantidades de matéria para o exterior – fenômeno que se imagina ter um grande impacto na evolução da galáxia hospedeira. Só que, até agora, explica o ESO em comunicado, nunca tinha sido encontrado um quasar com os altos níveis de energia de ejeção previstos por esta teoria.

Os cientistas descobriram um quasar, SDSS-J1106+1939, cujo ritmo de emissão de energia é, diz Arav, “no mínimo equivalente a dois bilhões de vezes a emissão de energia do Sol e cerca de 100 vezes maior do que a produção energética total da Via Láctea”. O quasar “cospe” cerca de 400 vezes a massa do Sol por ano, à velocidade de 8000 quilômetros por segundo. “Há dez anos que procurávamos uma coisa destas e é muito excitante termos finalmente encontrado uma ejeção tão monstruosa como previa a teoria!”

Fonte: Público Ciência

Os dois maiores buracos negros do universo são descobertos pelos cientistas

Ilustração mostra estrelas em movimento em uma galáxia elíptica, que tem em seu centro um buraco negro supermassivo. Fonte: Nasa

Um grupo de cientistas descobriu os dois maiores buracos negros conhecidos até o momento, com uma massa quase 10 bilhões de vezes superior à do Sol, informa um artigo publicado nesta segunda-feira pela periódico cientifíco Nature.

Esses buracos negros, localizados em duas enormes galáxias elípticas a cerca de 270 milhões de anos-luz da Terra, são muito maiores do que se previa por meio de deduções dos atributos das galáxias anfitriãs.

Segundo os especialistas, liderados por Chung-Pei Ma, da Universidade da Califórnia, nos Estados Unidos, a descoberta sugere que os processos que influenciam no crescimento das galáxias grandes e seus buracos negros diferem dos que afetam as galáxias pequenas.

Os cientistas acreditam que todas as galáxias maciças com componente esferoidal abrigam em seus centros buracos negros gigantescos. As oscilações de luminosidade e brilho identificadas nos quasares do universo sugerem ainda que alguns deles teriam sido alimentados por buracos negros com massas 10 bilhões de vezes superiores à do Sol.

No entanto, o maior buraco negro conhecido até então, situado na gigantesca galáxia elíptica Messier 87, tinha uma massa de apenas 6,3 bilhões de massas solares.

Os buracos negros são difíceis de serem detectados porque sua poderosa gravidade os absorve por completo, incluindo a luz e outras radiações que poderiam revelar sua presença.

Os cientistas avaliaram os dados de duas galáxias vizinhas à Messier 87 – NGC 3842 e NGC 4889 – e concluíram que nelas havia buracos negros supermassivos.

Os cientistas usaram o telescópio Gemini do Havaí, adaptado com lentes especiais que permitem detectar o movimento irregular de estrelas que se movimentam perto dos buracos negros e que são absorvidas por eles.

Os pesquisadores constataram que a NGC 3842 abriga em seu centro um buraco negro com uma massa equivalente a 9,7 milhões de massas solares, enquanto, na NGC 4889, há outro com uma massa igual ou superior.

Esses buracos negros teriam um horizonte de fatos, a região na qual nada, nem sequer a luz, pode escapar de sua atração, cerca de sete vezes maior do que todo o sistema solar.

Segundo os especialistas, o enorme tamanho dos buracos se deve à sua habilidade para devorar não só planetas e estrelas, mas também pequenas galáxias, um processo que teria sido produzido ao longo de milhões de anos.

Fonte:Último segundo