Em que devemos acreditar? A resposta correta é: no grau de probabilidade dos existenciais!

Vivemos na era da máxima aquisição de conhecimentos. Créditos imagem: pngwing.

Qual a confiabilidade da informação distribuída hoje na internet?

Quando você tem contato com determinada informação, seja na forma de conteúdos que aparecem nas redes sociais: Blogs (este aqui por exemplo) Twitter, WhatsApp, Facebook, canais do Youtube, Wikipedia, etc. A medida da probabilidade da informação embarcada nesses meios digitais, estar correta, é de apenas 50%.

Análise do espaço amostral

Para analisar esses espaços vamos utilizar a distribuição de Bernoulli, uma distribuição discreta de espaço amostral {0, 1}, que tem valor 1 com a probabilidade de sucesso p e valor 0 com a probabilidade de falha q = 1 − p. Uma moeda pode dar “coroa” com probabilidade p e “cara” com probabilidade 1 − p. A experiência é dita justa se p = 0.5, indicando a origem dessa terminologia em jogos de apostas (a aposta é justa se ambos os possíveis resultados têm a mesma probabilidade).

Qual a orientação segura para tomar como verdade algo divulgado nas redes sociais?

  • Não acredite às cegas no que você leu, considere tudo como 50% verdadeiro.
  • Busque as fontes da postagem, mensagem, conteúdo, fotos, vídeos, etc.
  • Faça uma comparação do conteúdo com suas fontes (origem da informação divulgada), caso o conteúdo não tenha fontes, descarte imediatamente a mensagem, fotos, textos, etc. – Neste ponto a probabilidade de ser verdade cairá para zero!
  • Revise profundamente tudo o que você leu, ouviu, aprendeu, etc. Compare tudo com os avanços e descobertas científicos atuais. Esta é a conduta para alcançar a assertividade!
  • Nunca propague Fake News (notícias falsas ou com base em inexistentes)!

A informação contida em bíblias é segura?

Toda informação contida em livros bíblicos tem como base as crenças em inexistentes, portanto, não são confiáveis ou contém atrasos culturais, morais, éticos e sociológicos!

Prova

Ex: A x 0 = 0 neste caso, uma informação cuja fonte é inexistente – mesmo que esteja escrito como referência ou como significado – terá o mesmo efeito de multiplicar por 0, o resultado será nulo! Torna-se um PCI (produto de crenças em inexistentes). Deveria ser obrigatório que esses livros viessem com a seguinte inscrição nas capas: cuidado com a leitura, este conteúdo é duvidoso!

O que são existenciais?

Existenciais são sinônimos de existência, é a qualidade de tudo o que é real ou existe, e é também a base de todas as outras coisas. Podemos definir a existência como: possibilidades espaciais/subespaciais, temporais em nosso universo.

Em lógica um existencial recebe a letra:

Ex: ∃ x:P(x) significa que há pelo menos um x para o qual P(x) é verdadeiro.

Consequências devastadoras das crenças em inexistentes

  • Se você negar o coronavírus e publicar isso, você será severamente penalizado! Poderá ter suas redes sociais bloqueadas, canais do Youtube excluídos, etc.
  • Se negar as mudanças climáticas, idem!
  • Você se nega a receber a vacina do coronavírus e se pegar o vírus poderá morrer!
  • Você terá dificuldades em aceitar a plena automatização das tarefas humanas por robôs, IAs, e integração das cadeiras produtivas na 4ª revolução industrial.
  • Você terá dificuldades em compreender as viagens espaciais e os avanços da tecnologia.

Não tente atribuir juízo de valor para inexistentes

As consequências da tentativa de atribuir juízos de valor para coisas que não existem, pode causar a nulidade da valoração dos assuntos em questão. Embora todos tenham o direito de expressar suas ideias e pensamentos, estamos sujeitos às regras existenciais.

Sobre liberdade de expressão

Qualquer pessoa tem direito à liberdade de expressão. Este direito compreende a liberdade de opinião e a liberdade de receber ou de transmitir informações ou ideias sem que possa haver ingerência de quaisquer autoridades públicas e sem considerações de fronteiras.

O exercício destas liberdades, porquanto implica deveres e responsabilidades, pode ser submetido a certas formalidades (∃), condições (∃), restrições (∃) ou sanções (∃), previstas pela lei (∃), que constituam providências necessárias, numa sociedade democrática, para a segurança nacional, a integridade territorial ou a segurança pública, a defesa da ordem e a prevenção do crime, a proteção da saúde ou da moral, a proteção da honra ou dos direitos de outrem, para impedir a divulgação de informações confidenciais, ou para garantir a autoridade e a imparcialidade do poder judicial.

(∃) = regras dos existenciais.

Quem determina o que existe e o que não existe?

  1. Lógica matemática (infraestrutura básica de nosso pensamento – educação básica)
  2. Leis da física (100% existenciais e descobertas – educação básica)
  3. Ciência (extremamente confiável)
  4. Tecnologia (aprimoramento do ser humano)
  5. Epistemologia (estudo aprofundado do conhecimento)

Estes são os cinco pilares que determinam a identificação, normalização e propagação dos existenciais. Não existe entidades, escolas, ou grupos que irão determinar o que existe ou não, essa determinação está condicionada ao grau educacional de cada ser humano no planeta, são percepções provadas e não acidentais.

Crença em inexistentes é pura falta de educação!

Em pleno século XXI é inadmissível que alguém em plena consciência e com sanidade cognitiva, com acesso à educação fundamental, ainda acredite em coisas que não existem. Se você acredita em algo que não pode existir, ou não existe, revise de forma urgente essa crença, caso contrário poderá trazer consequência devastadoras em sua vida e de seus semelhantes. Ex.: acidentes graves no trânsito (confiar no santinho pendurado no espelho retrovisor e dormir ao volante), morte por coronavírus (sua crença em seres inexistentes, sua igreja ou grupos do qual você faça parte, convenceram você a não tomar vacinas).

Só atingiremos a maturidade política no momento em que conseguirmos dispensar qualquer cultura metafísica, qualquer cultura que creia em poderes e forças não-humanas.

{John Dewey}.

Resumo epistemológico

  • Existência = natureza ou leis da física (100% da existência no universo: matéria, energia, tempo, espaços, subespaços).
  • Inexistência = tudo o que não faz parte das leis da física (0% de existência “não podem existir” deus, deuses, espíritos, alma, etc.).
  • Simulação Cerebral = autopercepção de nós mesmos (é aqui que entra nossa consciência 100% simulada pelo cérebro).
  • Conhecimento = CVJV (crenças verdadeiras, justificas e validadas).
  • Ciência = descoberta e aplicação das leis da física
  • Tecnologia = aplicação da ciência.
  • Dado = informação armazenada.
  • Informação = aquisição de conhecimento.

Resumo filosófico

Convenções sobre operações indexadas no conjunto vazio

  • Somas vazias = 0
  • Produtos vazios = 1
  • Uniões vazias = ∅
  • Interseções vazias = o conjunto universo
  • Permutações vazias! = 1
  • O conjunto vazio { } = ∅ determina a origem dos microestados ou da informação que será medida.

Fórmula para a mínima possibilidade de medição:

μ(∅) = 0

O campo da Subjetividade

Os espaços/subespaços matemáticos (ao contrário dos espaços/subespaços físicos que não objetivos e independem de nossos conceitos) formam o campo da subjetividade, entendida como o subespaço íntimo do indivíduo, ou seja, como ele “instala via simulação cerebral” a sua opinião ao que é dito (mundo interno) com o qual ele se relaciona com o mundo social e físico (mundo externo), resultando tanto em marcas singulares na formação do indivíduo quanto na construção de crenças e valores compartilhados na dimensão cultural que vão constituir a experiência histórica e coletiva dos grupos e populações. A psicologia social utiliza frequentemente esse conceito de subjetividade e seus derivados como formação da subjetividade ou subjetivação. Etimologia: do latim subjectivus (subicere: “colocar sob” + jacere: “atirar, jogar, lançar”).

A subjetividade é o mundo interno simulado pelo cérebro de todo e qualquer ser humano. Este mundo interno é composto por emoções, sentimentos e pensamentos.

Na teoria do conhecimento, a subjetividade é o conjunto de ideias, significados e emoções que, por serem baseados no ponto de vista do sujeito, são influenciados por seus interesses e desejos particulares. Tem como oposto a objetividade (espaços/subespaços da física), que se baseia em um ponto de vista intersubjetivo, isto é, que pode ser verificável por diferentes sujeitos e medido, inclusive por dispositivos e aparatos da tecnologia.

Do ponto de vista da sociologia, a subjetividade se refere ao campo de ação e representação dos sujeitos – sempre condicionados a circunstâncias históricas, políticas e culturais.

Através da nossa subjetividade construímos um espaço relacional, ou seja, nos relacionamos com o “outro”. Este relacionamento nos insere dentro de esferas de representação social em que cada sujeito ocupa seu papel de agente dentro da sociedade. Estes sujeitos desempenham papeis diferentes de acordo com o ambiente e a situação em que se encontram, o que segundo Goffmam pode ser interpretado como ações de atores sociais. Somente a subjetividade contempla, coordena e conhece estas diversas facetas que compõem o indivíduo.

O campo das psicologias confronta-se cada vez mais com as exigências éticas colocadas pela necessidade de reconhecimento da alteridade como elemento constitutivo das subjetividades singulares.

As diferenças nos modos de subjetivação e constituição das subjetividades relacionam-se com a dimensão ética na medida em que esta sistematiza e justifica racionalmente um determinado código ou padrão de conduta, um determinado quadro de normas e valores e uma determinada postura a ser ensinada aos e exigidas dos sujeitos. As éticas, portanto, são como dispositivos “ensinantes” de subjetivação: elas efetivamente sujeitam os indivíduos, ensinando, orientando, modelando e exigindo a conversão dos homens em sujeitos morais historicamente determinados.

E sobre aqueles que trabalham divulgando inexistentes?!

Muitas vezes as pessoas me perguntam: e aqueles que trabalham nas profissões como escritores de ficção, padres, pastores, astrólogos, artistas, ilusionistas – os mágicos, as homeopatias, psicanalistas, espiritualistas, ufologistas, etc.

Quando o intuito é beneficiar o próximo e não lhes causar danos, prestando um serviço que seja digno e venha ao amparo das pessoas, esse tipo de inexistentes tornam-se um nicho e tendem a se dissipar com o tempo, porque os existenciais se sobrepõem em todas as coisas.

Núcleo existencial

Em todos os espaços/subespaços o conjunto vazio ∅ vem primeiro, portanto, o conjunto vazio ∅ funciona como um autovetor e autovalor, constituindo o núcleo existencial.

Quando o conjunto vazio ∅ não estiver presente, algo precisa vir em seu lugar – que seja um existente, não é mesmo? 😉

{RC}

Referências Bibliográficas

Qual a diferença entre Conhecimento, Informação e Dados? – Comece 2022 com essas dúvidas resolvidas!

Desejo a todos um 2022 repleto de experiências incríveis, muita saúde, foco em crescimento e constante aquisição de conhecimento. Por falar nisso, não poderia deixar de resumir esse assunto com base nas minhas últimas pesquisas. Boa leitura!

{RC}.

O que é conhecimento?

Conhecimento, do latim cognoscere (ato de conhecer), como a própria origem da palavra indica, é o ato ou efeito de conhecer. Como por exemplo: conhecimento das leis, conhecimento de um fato, conhecimento de um documento, termo de recibo ou nota em que se declara o aceite de um produto ou serviço; saber, instrução ou cabedal científico (homem com grande conhecimento), informação ou noção adquiridas pelo estudo ou pela experiência, (autoconhecimento) consciência de si mesmo.

No conhecimento temos dois elementos básicos: o sujeito (cognoscente) e o objeto (cognoscível), o cognoscente é o indivíduo capaz de adquirir conhecimento ou o indivíduo que possui a capacidade de conhecer. O cognoscível é o que se pode conhecer.

Qual a origem do conhecimento?

A origem é o núcleo de nossa capacidade de adquirirmos conhecimentos, reside nos espaços/subespaços subjacentes. Você poderá ler os detalhes técnicos no meu outro poste: Qual a origem do conhecimento? A resposta é o conjunto ∅

Crítica à teoria CVJ e contraexemplos de Edmund Gettier

O conhecimento pode ser compreendido como uma “crença verdadeira justificada (CVJ)”, isto é, um dado sujeito tem uma crença – opinião – essa crença é verdadeira e o sujeito tem boas razões para a justificativa. Assim sendo, crença, verdade e justificação são condições necessárias para que se constitua conhecimento, mas apenas no seu conjunto são suficientes. Crença é uma condição necessária pois não é possível conhecer sem acreditar. Por outro lado, esta não constitui uma condição suficiente pois esta não passa de uma opinião, podendo, então, ser falsa, saber/conhecer é, portanto, diferente de acreditar. Verdade é uma condição necessária uma vez que o conhecimento é factivo (expressa a verdade), ou seja, não se podem conhecer falsidades. No entanto esta não é por si só uma condição suficiente, dado que podemos acreditar em alguma coisa que é verdadeira sem que saibamos que esta é verdadeira. Justificação é uma condição necessária já que é necessário haver boas razões nas quais apoiar a verdade de uma crença. Contudo a justificação não é por si uma condição suficiente, porque ter razões para acreditar em algo não garante que essa crença seja verdadeira.

A (V)alidação de CVJ torna-se obrigatória

Ao analisar os contraexemplos de Gettier, podemos perceber sem sombra de dúvidas que CVJ (Crença Verdadeira e Justificada), é insuficiente para definir conhecimento. Um quarto critério se faz necessário: a validação pós justificativa).

É importante distinguir entre casos de conhecimento e casos de crença meramente verdadeira, mais especialmente porque um erro de julgamento, neste caso, significa o confisco ou a continuação da vida de outro ser humano. É, portanto, seguro dizer que, neste e em outros casos semelhantes, não sustentar a distinção acima mencionada é desastroso não apenas na lógica epistêmica, mas também moralmente.

A coesão definitiva de CVJV, subespaços e teoria da simulação cerebral

Para tornar o conhecimento coeso e adaptado às tecnologias atuais, fiz adição da teoria da simulação cerebral com subespaços – embora isso torne o tema um pouco complexo -, considero de extrema importância para evitar o chamado ED (Erro Degrau). Esse erro é o principal causador das falhas educacionais, principalmente em países do terceiro mundo como no Brasil.

Um exemplo de erro degrau: pensar que a energia é transmitida por dentro dos fios elétricos quando na verdade é por fora deles (nos subespaços eletromagnéticos) – segue as provas nas referências bibliográficas, tratarei desse assunto breve em um novo poste.

Como nasceu a teoria da informação?

A origem da informação ou teoria da informação nasceu com o particionamento binário de espaço proposto por Shannon. Leia meu resumo em: Teoria da informação e entropia – como passamos do conhecimento para a informação?

Convenções sobre operações indexadas no conjunto vazio

  • Somas vazias = 0
  • Produtos vazios = 1
  • Uniões vazias = ∅
  • Interseções vazias = o conjunto universo
  • Permutações vazias = 1

O conjunto vazio { } = ∅ determina a origem dos microestados ou da informação que será medida.

{RC}.

O que são dados?

Um conjunto de informações que depende da forma (espacial ou subespacial) e tipo (estruturados ou não estruturados). Ex: uma letra, uma palavra, símbolos matemáticos, uma página de texto, um livro em formato pdf, um livro em papel, uma planilha, um formulário em papel ou online, etc. Os dados podem ser classificados no tipo: estruturados e não estruturados.

Resumo Epistemológico

Referências Bibliográficas

Teoria da informação e entropia – como passamos do conhecimento para a informação?

O que é entropia nos termos da física?

Dente de leão simbolizando a entropia. Créditos: www.pngwing.com.

Entropia (do grego εντροπία, entropia), unidade [J/K] (joules por kelvin), é uma grandeza termodinâmica que mede o grau de liberdade molecular de um sistema, está associado ao seu número de configurações (ou microestados), ou seja, de quantas maneiras as partículas (átomos, íons ou moléculas) são distribuídos em níveis energéticos quantizados, incluindo translacionais, vibracionais, rotacionais e eletrônicos. Entropia também é geralmente associada à aleatoriedade, dispersão de matéria e energia, e “desordem” (não em senso comum) de um sistema termodinâmico. A entropia é a entidade física que rege a segunda lei da termodinâmica, à qual estabelece que a ela deve aumentar para processos espontâneos e em sistemas isolados. Para sistemas abertos, deve-se estabelecer que a entropia do universo (sistema e suas vizinhanças) deve aumentar devido ao processo espontâneo até o meio formado por sistema + vizinhanças atingir um valor máximo no estado de equilíbrio. Neste ponto, é importante ressaltar que vizinhanças se entende como a parte do resto do universo capaz de interagir com o sistema, através de, por exemplo: trocas de calor.

Função da entropia binária, ensaio de Bernoulli, princípio da entropia máxima. Créditos: http://www.pngwing.com.

A distribuição de Bernoulli, nome em homenagem ao cientista suíço Jakob Bernoulli, é a distribuição discreta do espaço amostral {0, 1}, que tem valor 1 com a probabilidade de sucesso p e valor 0 com a probabilidade de falha q = 1 − p.

Resumo:

  • P(1) = p
  • P(2) = q
  • p + q = 1
  • q = 1 − p

Se X é uma variável aleatória com essa distribuição, teremos:

P(X=1)=1-P(X=0)=1-q=p

Um exemplo clássico de uma experiência de Bernoulli é uma jogada única de uma moeda. A moeda pode dar “coroa” com probabilidade p ou “cara” com probabilidade 1 − p. A experiência é dita justa se p = 0.5, indicando a origem dessa terminologia em jogos de apostas (a aposta é justa se ambos os possíveis resultados têm a mesma probabilidade).

Gelo derretendo. (C) WiKi.

Uma definição formal de entropia em termos de possibilidade é: entropia é uma medida aditiva do número de possibilidades disponíveis para um sistema. Assim, a entropia de um sistema físico é uma medida aditiva do número de microestados possíveis que podem ser realizados pelo sistema. E a entropia de uma fonte de mensagem é uma medida aditiva do número de mensagens possíveis que podem ser escolhidas dessa fonte de mensagens.

Obs.: com a morte de um organismo vivo, a entropia do organismo aumenta. À medida que o interior morre, seus restos são espalhados pelo vento. No entanto, mesmo nesta morte, novas possibilidades são distribuídas.

Entropia na teoria da informação

A falta de informação é uma medida da informação necessária para escolher um microestado específico de um conjunto de microestados possíveis ou uma mensagem de uma fonte de mensagens possíveis. Ao passo que a incerteza pode ser entendida como a falta de informação sobre uma questão de interesse para um determinado agente (por exemplo, um tomador de decisão humano ou uma máquina), uma condição de conhecimento limitado em que é impossível descrever exatamente o estado do mundo ou sua evolução futura. Portanto, podemos representar essa origem como:

μ(∅) = 0

O significado dessa fórmula é: a entropia do vazio ∅ (origem do conhecimento) é zero 0.

A teoria da informação lógica cumpre precisamente a máxima de Kolmogorov. Ele começa simplesmente com um conjunto de distinções definidas por uma partição (divisão) em um conjunto finito U, onde uma distinção é um par ordenado de elementos de U em blocos distintos da partição – podemos representar isso como Probabilidade/Subespaços. Assim, o objeto “combinatório finito” é o conjunto de distinções (“distset”) ou conjunto de informações (“infoset”) associado à partição – Informação/Partição; ou seja, o complemento em U × U da relação de equivalência associada à partição. Para obter uma medida quantitativa de informação, qualquer distribuição de probabilidade em U define uma medida de probabilidade do produto de U × U, e a entropia lógica é simplesmente essa medida de probabilidade no conjunto de informações. Esta descrição motivacional da teoria da informação lógica será agora desenvolvida em detalhes.

O conceito de incerteza desempenha um papel semelhante. Quanto maior e mais variado o conjunto a partir do qual um sistema pode ser escolhido e quanto maior e mais variada a fonte da mensagem da qual uma mensagem pode ser extraída, mais incerto será o resultado e mais alta será a entropia. A entropia lógica é a medida (no sentido técnico não negativo da teoria da medida) de informações que surgem da lógica de partição assim como a teoria da probabilidade lógica surge da lógica de subconjuntos (subespaços).

Entropia de Shannon

Representação da origem do conhecimento μ(∅) = 0 com o particionamento binário proposto por Shannon. Créditos imagem: CC {rcristo.com.br}

Consequentemente, a entropia de Shannon é interpretada como o número médio do limite de bits necessários por mensagem. Em termos de distinções, este é o número médio de partições binárias necessárias para distinguir as mensagens.

Podemos representar a entropia de Shannon pela fórmula:

H(p)=\sum_{k=1}^{m} p_{k} \log _{2}\left(\frac{1}{p_{k}}\right)

Considere uma árvore binária de três níveis, onde cada ramo se divide em dois ramos equiprováveis em cada nível, como em 2^{3}=8, folhas são as mensagens, cada uma com probabilidade \frac{1}{8}. Uma entropia multiplicativa de Shannon é o número de mensagens equiprováveis 2^{3}=8, e a entropia de Shannon é o número de decisões binárias ou bits \log \left(2^{3}\right)=3 necessários para determinar cada mensagem que, neste exemplo canônico, é o comprimento do código binário de cada mensagem.

Máquina de Galton

Tabuleiro de Galton em movimento. Créditos Wikipédia.

Se pensarmos na árvore como uma máquina de Galton com bolinhas de gude caindo da raiz e tomando um dos galhos com igual probabilidade, então a probabilidade de alcançar qualquer folha em particular é, obviamente, \frac{1}{8}. A entropia lógica é a probabilidade de que em duas tentativas diferentes a bola de gude alcance folhas diferentes.

h (p) = 1 − 8 × \left(\frac{1}{8}\right)^{2}=1-\frac{1}{8}=\frac{7}{8}

Entropia como possibilidade é uma palavra adequada e, ao contrário da incerteza e da falta de informação, tem conotação positiva. Assim, de acordo com a segunda lei da termodinâmica, um sistema termodinâmico isolado sempre evolui no sentido de abrir novas possibilidades. E quanto maior o conjunto de possibilidades a partir do qual um microestado ou uma mensagem podem ser realizados ou escolhidos, maior será a entropia do sistema físico ou a entropia de Shannon da fonte da mensagem.

Convenções sobre operações indexadas no conjunto vazio

  • Somas vazias = 0
  • Produtos vazios = 1
  • Uniões vazias = ∅
  • Interseções vazias = o conjunto universo
  • Permutações vazias = 1

O conjunto vazio { } = ∅ determina a origem dos microestados ou da informação que será medida.

{RC}.

A medida direta é a entropia lógica que é a medida quantitativa das distinções feitas por uma partição. A entropia de Shannon é uma transformação ou reunificação da entropia lógica para a teoria matemática das comunicações. O matemático Andrei Kolmogorov sugeriu que as informações devem ser definidas independentemente da probabilidade, de modo que a entropia lógica é definida pela primeira vez em termos do conjunto de distinções de uma partição e, em seguida, uma medida de probabilidade no conjunto define a versão quantitativa da entropia lógica.

A entropia de Shannon é frequentemente apresentada como sendo a mesma que a entropia de Boltzmann.

Conectividade espacial e subespacial

Trabalhamos com um espaço métrico que entendemos como um plano complexo, a menos que especificado de outra forma. A letra Ω denotará um conjunto aberto no espaço métrico, consequentemente, uma região é simplesmente conectada se e somente se seu complemento no plano complexo estendido estiver conectado. Assim, uma região é simplesmente conectada se e somente se não tiver orifícios. Este é um critério muito transparente para determinar se uma região está simplesmente conectada ou não.

Para qualquer conjunto finito U, uma medida μ (lê-se: mi é a décima segunda letra do alfabeto grego) é uma função μ: ℘ (U) → R tal que:

μ(∅) = 0,

para qualquer E ⊆ U, μ (E) ≥ 0, e

para quaisquer subconjuntos disjuntos E1 e E2, μ (E1 ∪ E2) = μ (E1) μ (E2).

Seja X um espaço métrico e E ⊆ X, começamos com uma definição de conectividade

Definição: um conjunto E é conectado se E não puder ser escrito como uma união disjunta de dois subconjuntos abertos relativos não vazios de E. Assim, E = A ∪ B com A ∩ B = ∅ e A, B aberto em E implica que A = ∅ ou B = ∅. Caso contrário, E = A ∪ B é chamado de separação E em conjuntos abertos. Por exemplo, a união E de dois discos abertos separados A e B não está conectada, pois:

E = A ∪ B = (A ∪ B) ∩ E = (A ∩ E) ∪ (B ∩ E)

onde A ∩ E e B ∩ E não estão vazios, disjuntos e relativamente abertos em E. Como em C, um conjunto conectado aberto em um espaço métrico é chamado de região.

Definição: um subconjunto máximo conectado de E é chamado de componente de E. Para a ∈ E, seja C(a) a união de todos os subconjuntos conectados de E contendo a. Observamos que a ∈ C (a) uma vez que {a} está conectado e:

E=\bigcup_{a \in E} C(a)

Fornecemos algumas propriedades de C(a).

(i) C(a) está conectado.

A prova é por contradição. Seja C(a) = A ∪ B uma separação de C(a) em conjuntos abertos. Podemos assumir que a ∈ A e b ∈ B. Então, como b ∈ C(a) e C(a) é a união de todos os subconjuntos conectados de E contendo a, existe E0 ⊆ E tal que E0 ⊆ C(a) está conectado e a ∈ E0, b ∈ E0. Por isso:

E0 = E0 ∩ C (a) = E0 ∩ (A ∪ B) = (E0 ∩ A) ∪ (E0 ∩ B)

implica que ou E0 ∩ A = ∅ ou E0 ∩ B = ∅. Isso é uma contradição, pois a ∈ E0 ∩ A e b ∈ E0 ∩ B.

Assim, cada componente de E tem a forma C(a) com um ∈ E.

Os componentes de E são disjuntos ou idênticos.

Seja a, b ∈ E. Suponha que C(a) ∩ C(b) = ∅. Então provamos que C(a) = C(b). Seja x ∈ C(a) ∩ C(b). Então x ∈ C(a). Como C(a) está conectado, deduzimos que C(a) ⊆ C(x). Então a ∈ C(x) que implica C(x) ⊆ C(a) já que C(x) está conectado. Assim, C(a) = C(x). Da mesma forma C(b) = C(x) e, portanto, C(a) = C(b).

Os componentes de um conjunto aberto são abertos

Seja E um conjunto aberto. Basta mostrar que C(a) com a ∈ E está aberto. Seja x ∈ C(a).

(ii) Então C(x) = C(a).

Como x ∈ E e E é aberto, existe r > 0 tal que D(x, r) ⊆ E. De fato, D(x, r) ⊆ C (x) já que D(x, r) está conectado contendo x. Assim, x ∈ D(x, r) ⊆ C(a) e, portanto, C(a) é aberto.

Ao combinar (i), (ii) concluímos: um conjunto aberto em um espaço métrico é uma união disjunta de regiões.

Para os pontos P0, P1, …, Ps no plano complexo, escrevemos [P0, P1, …, Ps] para o caminho poligonal obtido unindo P0 a P1, P1 a P2, …, Ps− 1 a Ps por segmentos de linha. Agora fornecemos um critério fácil de aplicar para mostrar que os conjuntos no plano estão conectados.

Seja E um subconjunto aberto não vazio de C. Então E é conectado se e somente se quaisquer dois pontos em E podem ser unidos por um caminho poligonal que está em E.

Prova: Suponha que E está conectado. Como E = ∅, seja a ∈ E. Seja E1 o subconjunto de todos os elementos de E que podem ser unidos a a por um caminho poligonal. Seja E2 o complemento de E1 em E. Então:

E = E1 ∪ E2 com E1 ∩ E2 = ∅, a ∈ E1.

É suficiente mostrar que E1 e E2 são subconjuntos abertos de E. Então E2 = ∅ visto que E está conectado e a ∈ E1. Assim, cada ponto de E pode ser unido a a por um caminho poligonal que fica em E. Portanto, quaisquer dois pontos de E podem ser unidos por um caminho poligonal que fica em E via a.

Primeiro, mostramos que E1 está aberto. Seja a1 ∈ E1. Então a1 ∈ E e como E está aberto, encontramos r1 > 0 tal que D(a1, r1) ⊆ E. Qualquer ponto de D(a1, r1) pode ser unido a a1 e, portanto, a a por um caminho poligonal que fica em E desde a1 ∈ E1. Assim, a1 ∈ D(a1, r1) ⊆ E1. A seguir, mostramos que o E2 está aberto. Seja a2 ∈ E2. Novamente encontramos r2 > 0 de modo que D(a2, r2) ⊆ E visto que E está aberto. Agora, como acima, vemos que nenhum ponto deste disco pode ser unido a a como a2 ∈ E2 e, portanto, a2 ∈ D(a2, r2) ⊆ E2. Agora assumimos que se quaisquer dois pontos de E podem ser unidos por um caminho poligonal em E, mostramos que E está conectado. Deixe:

E = E1 ∪ E2

Seja uma separação de E em conjuntos abertos. Não há perda de generalidade em assumir que existem pontos a1 ∈ E1 e a2 ∈ E2 tais que:

χ (t) = ta1 (1 – t) a2 com 0 <t <1

é um segmento aberto de a2 a a1 situado em E. Deixe:

V = {t ∈ (0, 1)|χ(t) ∈ E1} e W = {t ∈ (0, 1)|χ(t) ∈ E2}.

Vimos que V e W estão abertos em (0, 1). Além disso, temos a separação do intervalo aberto (0, 1) em conjuntos abertos (0, 1) = V ∪ W, V ∩ W = ∅

Como a1 ∈ E1 e E1 está aberto, existe r3 > 0 com D(a1, r3) ⊆ E1. Isso implica V = ∅. Da mesma forma W = ∅. Portanto, o intervalo (0, 1) não está conectado. Isso é uma contradição.

Partições Young

Para uma partição λ, o diagrama de Young da forma λ é um diagrama justificado à esquerda |λ| em caixas, com λi caixas pretas na i-ésima coluna, denotamos o conjunto de todos os diagramas Young contidos em um k × (m − k) caixa por Tk,m−k \mathcal{T}_{m}=\cup_{k=0}^{m}

Por exemplo, os diagramas de Young no conjunto T2,2 são dados por:

O conjunto T3 é dado por:

Observe que cada diagrama de Young em Tm pode ser obtido de um diagrama de Young em Tm−1 adicionando uma coluna vazia à sua direita ou uma linha preenchida antes de sua primeira linha. Por exemplo, as partições obtidas da partição λ = ∅ ∈ T1,2 são dadas por 1 ∈ T2,2 e ∅ ∈ T1,3. Assim, o número de diagramas de Young no conjunto Tm é dado por 2m. A seguir, identificamos uma partição e seu diagrama Young associado.

Para qualquer partição λ = λ1 ··· λk, definimos λ∗ como a partição λ∗ = (λ1 + 1)(λ2 + 1)··· (λk + 1) e λ∗ como a partição λ∗ = λ1 ·· · λk0.

Em outras palavras, λ ∗ é o diagrama de Young que é obtido de λ adicionando uma linha preenchida antes da primeira linha de λ, e λ ∗ é o diagrama de Young que é obtido de λ adicionando uma coluna vazia no lado direito de λ.

O que são dados?

O significado de dados é: um conjunto de informações que depende da forma (espacial ou subespacial) e tipo (estruturados ou não estruturados). Ex: uma letra, uma palavra, símbolos matemáticos, uma página de texto, um livro em formato pdf, um livro em papel, uma planilha, um formulário em papel ou online, etc. Os dados podem ser classificados no tipo: estruturados e não estruturados.

Obs.: um livro em papel é um dado espacial, um livro em PDF ou EPUB é um dado subespacial.

O principal objetivo das minhas pesquisas é esclarecer você leitor para que se proteja dos absurdos conceituais que os influenciadores da própria internet estão disseminando o tempo todo; 100% de tudo o que você leu, ouviu, assistiu, etc., precisa de provas contundentes (referências lógicas válidas), para alcançar CVJV, caso contrária não terá validade.

Claude Shannon

Em 1948, publicou o importante artigo científico intitulado A Mathematical Theory of Communication July, October, 1948 – C. E. SHANNON enfocando o problema de qual é a melhor forma para codificar a informação que um emissor queira transmitir para um receptor.

Clique na foto de Shannon (Courtesy of MIT Museum) e baixe em PDF seu mais importante trabalho.

A matemática é a linguagem com a qual escrevemos as partituras que representam a realidade percebida (universo), cujo pano de fundo é a entropia, a origem do conhecimento é o vazio { } e a informação é a possibilidade da representação que pode ser compactada em espaços e subespaços.

{RC}.

Referências Bibliográficas

Basic Analysis (análise básica) I e II – 9 de Novembro, 2021- Jiri Lebl

Os livros análise matemática básica I e II (clique nas capas dos livros para abrir em seus dispositivos) permitem uma compreensão clara e objetiva das técnicas utilizadas na aprendizagem da matemática com uma base mínima e necessária para que possamos adentrar em temas um pouco mais complexos.

Nenhuma pergunta pode ficar sem resposta, então leia e releia os livros I e II para aprimorar seu conhecimento em análise.

Esta ciência é a base estrutural para a plena aquisição de conhecimentos. Sem matemática, não entenderíamos as outras ciências, da física à economia, da química à biologia. Lembre-se: sem matemática o conhecimento não pode ser adquirido, se você duvida? Saiba que a maioria dos livros de análise matemática começam com a compreensão do conjunto vazio { }, não poderia ser diferente, pois o ∅ é a origem da matemática e, por conseguinte, de todas as outras coisas.

Exemplo: A = {x | P(x)}

Essa expressão define A como o conjunto de todos os objetos x possuindo a propriedade P (x). Isso geralmente é lido como “A é igual ao conjunto de todos os elementos x, de modo que P (x)”.

Se A for qualquer conjunto, o conjunto de todos os subconjuntos de A é denotado por P (A). O conjunto P (A) é às vezes referido como o conjunto de potência de A. Por exemplo, se A = {1, 2}, então:

P(A) = {∅, {1}, {2}, {1, 2}}.

Neste exemplo, o conjunto A tem 2 elementos e P(A) tem 4 ou \mathrm{2}^{2} elementos, os elementos neste caso são subconjuntos de A. Se tomarmos um conjunto com 3 elementos, então listando os subconjuntos de A é facilmente percebido que existem exatamente \mathrm{2}^{3} subconjuntos de A. Com base nesses dois exemplos, estamos inclinados a conjeturar que, se A contém 2 elementos, então P (A) contém \mathrm{2}^{2} elementos.

Obs: um par ordenado da forma: (a,b) = {{a}, {a, b}}

Uma definição teórica do conjunto de par ordenado pode ser dada como: (a, b) = {{a}, {a, b}}. Com esta definição, dois pares ordenados (a, b) e (c, d) são iguais se e somente se a = c e b = d.  {RC}.

Os Transfinitos de Cantor. Créditos: M3 Matemática Multimídia

Alfabeto Grego utilizado de forma plena em toda a matemática

α AAlphaι IIotaρ ϱ PRho
β BBetaκ KKappaσ ΣSigma
γ ΓGammaλ ΛLambdaτ TTau
δ ΔDeltaμ MMuυ ΥUpsilon
𝜖 ε EEpsilonν NNuϕ φ ΦPhi
ζ ZZetaΞξCsiχ XQui
η HEtao OOmicronψ ΨPsi
θ 𝜗 ΘThetaπ ΠPiω ΩÔmega
A matemática é representada pelo alfabeto grego. Clique nas letras para saber o seu significado.

O que é análise em matemática?

Análise é o ramo da matemática que lida com desigualdades e limites. O curso atual – tratado nos livros em anexo – lida com os conceitos mais básicos em análise. O objetivo do curso é familiarizar o leitor com provas rigorosas na análise e também para estabelecer uma base sólida para o cálculo de uma variável (e vários variáveis ​​se o volume II também for considerado).

O cálculo que você aprendeu – aluno/autodidata – ensinou a matemática sem lhe dizer por que o que você aprendeu é verdade. Para usar ou ensinar matemática de forma eficaz, você não pode simplesmente saber o que é verdade, você deve saber por que isso é verdade. Este curso mostra porque o cálculo é verdadeiro. Está aqui para lhe dar uma boa compreensão do conceito de limite, derivada e integral.

Vamos usar uma analogia. Um mecânico de automóveis que aprendeu a trocar o óleo, consertar os faróis quebrados, e carregar a bateria, só será capaz de fazer essas tarefas simples. Mas, será incapaz de trabalhar de forma independente para diagnosticar e corrigir problemas. Um professor do ensino médio que não entende a definição da integral de Riemann ou da derivada pode não ser capaz de responder adequadamente a todas as perguntas dos alunos. Até hoje eu me lembro de várias declarações sem sentido que ouvi do meu cálculo por professores no ensino médio, que simplesmente não entendia o conceito de limite, embora pudessem “resolver” os problemas do livro didático.

Começamos com uma discussão sobre o sistema de números reais, mais importante, sua propriedade e completude, que é a base de tudo o que vem depois. Em seguida, discutiremos a forma mais simples de um limite, o limite de uma sequência. Posteriormente, estudaremos as funções de uma variável, continuidade e a derivada. Em seguida vamos definir a integral de Riemann e provar o teorema fundamental do cálculo. Discutiremos sequências de funções e de intercâmbio de limites. Finalmente, damos uma introdução aos espaços métricos.

Deixe-nos dar a diferença mais importante entre análise e álgebra. Na álgebra, provamos igualdades diretamente; provamos que um objeto, talvez um número, é igual a outro objeto. Em análise, geralmente provamos desigualdades e provamos essas desigualdades por meio de estimativas. Para ilustrar este ponto, considere a seguinte declaração.

Seja x é um número real. Se x < ε {epsilon) for verdadeiro para todos os números reais ε > 0, então x ≤ 0.

Esta afirmação é a ideia geral do que fazemos em análise. Suponha que a seguir realmente desejamos provar a igualdade x = 0. Em análise, provamos duas desigualdades: x ≤ 0 e x ≥ 0. Para provar a desigualdade x ≤ 0, provamos x < ε para todos os ε positivos. Para provar a desigualdade x ≥ 0, provamos x > −ε para todos os ε positivos.

O termo análise real é um pouco confuso. Prefiro usar simplesmente: análise. O outro tipo de análise – análise complexa – realmente se baseia no material presente, ao invés de ser distinto. Além disso, um curso mais avançado sobre análise real falaria frequentemente sobre números complexos. Eu suspeito que a nomenclatura seja bagagem histórica.

Vamos continuar o show!

Créditos: Jiří Lebl

A compactação de espaços/subespaços

Os buracos negros são corpos astronômicos que conseguem compactar o espaço-tempo ao infinito, também podemos usar a matemática inventada por nós e fazer algo aproximado com aplicação na ciência/tecnologia.

SOC (System On Chip – Sistema em um Chip) M1 Max Apple

Chip M1 Max Apple. Créditos Apple.

Ex: O SOC (System On Chip – sistema em um chip) M1 Max: conta com 32 núcleos de processamento compactados no espaço de 432 \mathrm{ mm}^{2} com 57 bilhões de transistores em subespaços.

A partir deste poste para que seja possível compreender os assuntos mais técnicos tais como: RF (Rádio Frequência), fluxo cognitivo, subespaços métricos e não métricos, dobras espaciais, ondas gravitacionais, simulação cerebral, mecânica quântica, etc.; sem o conhecimento em análise matemática, o tema seria complexo demais para o leitor não versado nesse assunto: compreendê-lo.

Este estudo é recomendado para todas as idades e níveis educacionais, a única exigência é saber ler em inglês.

{RC}.

Referências Bibliográficas

Resolva suas dúvidas sobre espaços e subespaços: Leis da Física versus Matemática

O que são espaços e subespaços matemáticos?

Os espaços/subespaços da matemática são 100% conceituais/abstratos/subjetivos, são invenções cognitivas humanas (porque é nosso cérebro que faz matemática via simulação cerebral e todos os seres que possuem cérebros, ex: aranhas, também realizam procedimentos equivalentes, assim como as abelhas, observe a simetria de suas projeções geométricas) para que a ciência matemática possa existir e possa ser usada em nossas vidas. Experimentos e ferramentas com precisão extrema como as novas fábricas que utilizam EUV (UVE – Ultra Violeta Extrema) para fabricação de chips da TSMC de chips de silício de 3 (nm) nanômetros (previstos para 2022) (1 nm = 1 \times 10^{-9} metro ou 0,000.000.001 metro – um milionésimo de milímetro ou um bilionésimo de metro). O Brasil também está na vanguarda tecnológica com a nossa mais nova fábrica de luz síncroton Sirius (leia abaixo sobre nosso acelerador de luz de 4ª geração.). Também podemos atribuir possibilidades existenciais aos espaços/subespaços matemáticos.

O que são espaços e subespaços físicos?

Os espaços/subespaços da física são a infraestrutura (tecido) do próprio universo (nossos corpos e todas as coisas físicas ocupam espaços físicos), correspondem à realidade objetiva que independe de nossa concepção/abstração, também podemos atribuir possibilidades existenciais a eles.

Exemplo de espaço sem subespaço e espaço com subespaço. Créditos imagem: Wikipédia, Planosdeaula

Podemos ver na foto acima que ambos os tabletes (o Sumério de 6000 anos atrás e os tabletes atuais), ocupam lugares no espaço; entretanto, os tabletes atuais possuem subespaços compactados em seu interior contendo bilhões de componentes nanométricos (chips de silício).

Observatório de Ondas Gravitacionais por Interferômetro Laser

O Observatório de Ondas Gravitacionais por Interferômetro Laser (em inglês: Laser Interferometer Gravitational-Wave Observatory – LIGO). Em 11 de fevereiro de 2016, o projeto LIGO anunciou a detecção de ondas gravitacionais a partir do sinal encontrado às 09h51 UTC de 14 de setembro de 2015, de dois buracos negros com cerca de 30 massas solares em processo de fusão, a 1,2 bilhão de anos-luz da Terra. Isso confirmou a existência de espaços físicos que podem ser dobrados (contraídos pelas ondas gravitacionais). Em 3 de outubro de 2017, o Prêmio Nobel de Física foi atribuído a Rainer Weiss, Barry Barish e Kip Thorne por contribuições decisivas para o detector LIGO e a observação de ondas gravitacionais.

Numerical Simulation: S. Ossokine, A. Buonanno (Max Planck Institute for Gravitational Physics), Simulating eXtreme Spacetimes project; Scientific Visualisation: T. Dietrich (Max Planck Institute for Gravitational Physics), R. Haas (NCSA).

A animação acima mostra a coalescência (junção) de dois buracos negros em órbita, detectados pelos observatórios Ligo e Virgo avançado em 14 de agosto de 2017. A força da onda gravitacional é indicada tanto pela elevação quanto pela cor, com verde escuro indicando fracos campos e violeta brilhante indicando campos fortes. A amplitude da onda gravitacional é redimensionada no tempo, o que permite mostrar o sinal durante toda a coalescência e não apenas perto da fusão, onde é mais forte. Os tamanhos dos buracos negros foram aumentados por um fator de dois para melhorar a visibilidade.

Simulação da fusão de dois buracos negros – Max Planck Institute for Gravitational Physics.

Obs: não é a natureza que faz matemática – nosso universo não é matemático, somos nós por meio de nossa capacidade cognitiva (nosso cérebro) realizamos tal conquista. A natureza/física já nasceu com suas próprias leis que independem de nossa limitação em sua percepção ou compreensão.

{RC}.

A diferença entre espaços/subespaços físicos e matemáticos

Espaços/subespaços físicos são diferentes de espaços/subespaços matemáticos. É por esse motivo que a medida do metro (símbolo: m, unidade de medida de comprimento do Sistema Internacional de Unidades, definido como: o comprimento do trajeto percorrido pela luz no vácuo durante um intervalo de tempo de 1/299 792 458 de segundo), mudou para refletir a precisão em nossas medições no universo físico.

A precisão matemática entre esses elementos é a interseção entre eles: PM = EF ∩ EM

Significado de PM = EF ∩ EM

  • PM = Precisão Matemática
  • EF = Espaços ou/e subespaços da Física
  • EM = Espaços ou/e subespaços da Matemática

A interseção entre espaços/subespaços da física com a matemática, significa que alguns espaços/subespaços (conceitos/soluções/modelagem) matemáticos são válidos para a física, mas não todos.

Quando vemos um paradoxo na física, é realmente uma pista que aponta para uma lacuna em nosso entendimento, resolver o paradoxo pode nos levar a novos conhecimentos.

{Matt O’Dowd}

Leis da física

São as descobertas mais importantes, por meio delas conseguimos aproximar nossos modelos matemáticos para conseguir cada vez mais precisão em nossos experimentos, desenvolver novas ferramentas e instrumentos.

Espelho M4 com óptica adaptativa do ELT

Esta imagem é uma renderização do M4, o espelho adaptativo principal do Extremely Large Telescope (ELT). O termo “espelho adaptativo” significa que a superfície do espelho pode ser deformada para corrigir a turbulência atmosférica, bem como a vibração rápida da estrutura do telescópio induzida por seu movimento e pelo vento. O ELT, o maior olho no céu do mundo, terá um sistema óptico de cinco espelhos que permitirá desvendar o Universo com detalhes sem precedentes. Clique na imagem para ampliá-la. Créditos ESO.

O maior espelho adaptável já construído, o espelho M4 do futuro Extremely Large Telescope (ELT) (Telescópio Extremamente Grande), do ESO, atingiu um marco importante no seu desenvolvimento: os seis segmentos em forma de pétala que compõem o espelho estão terminados.

O M4, o quarto espelho no caminho da luz do telescópio, pode mudar de forma rapidamente de maneira muito precisa e constitui uma parte crucial do sistema de óptica adaptativa do ELT. A radiação emitida por objetos cósmicos é distorcida pela atmosfera do nosso planeta, dando origem a imagens borradas. Para corrigir estas distorções, o ELT utilizará hardware e software de óptica adaptativa avançada, alguns dos quais foram desenvolvidos especialmente para este telescópio. Estes sistemas incluem lasers potentes que criam estrelas artificiais de referência no espaço – necessárias quando não existem estrelas suficientemente brilhantes perto do objeto em estudo que permitam medições das distorções atmosféricas – e câmeras de detecção rápida e precisa que medem essas distorções. Estas medições são então encaminhadas em tempo real para computadores extremamente rápidos, que calculam as correções de forma necessária para serem aplicadas ao M4. Além da conclusão da construção das pétalas do M4, esses sistemas também atingiram recentemente importantes marcos na sua construção.

Graças ao seu sistema de óptica adaptativa, o ELT do ESO será capaz de fornecer imagens mais nítidas que as que são obtidas atualmente, ou no futuro – no espaço  – com telescópios tais como o Telescópio Espacial Hubble da NASA/ESA e o Telescópio Espacial James Webb com lançamento previsto para dezembro/2021.

Ilustração de como será o novo ELT. Créditos ESO.

Extreme Light Infrastructure (infraestrutura de luz extrema) (ELI)

Extreme Light Infrastructure – ELI.

ELI-Beamlines Facility

Em Dolni Brezany, perto de Praga, República Tcheca, a instalação ELI-Beamlines se concentrará principalmente no desenvolvimento de fontes secundárias de radiação e partículas de pulso curto e em suas aplicações multidisciplinares em ciências moleculares, biomédicas e materiais, física de plasmas densos, matéria densa quente, astrofísica de laboratório. Além disso, o pilar utilizará seus lasers de alta potência e alta taxa de repetição para experimentos de física de alto campo com intensidades focadas de cerca de 1 \times 10^{23} W/\mathrm{cm}^{2}, investigando física de plasma exótico e efeitos QED não lineares.

ELI-Attosecond Facility

A ELI Attosecond Light Pulse Source (Fonte de pulso de luz de attosegundo) (ELI-ALPS) em Szeged, Hungria está estabelecendo uma instalação única, que fornece fontes de luz entre THz (1 \times 10^{12} Hz) e faixa de frequência de raios-X (1 \times 10^{18}1 \times 10^{19} Hz) na forma de pulsos ultracurtos com alta taxa de repetição. O ELI-ALPS será dedicado a dinâmicas extremamente rápidas tirando fotos instantâneas na escala de attossegundos (um bilionésimo de um bilionésimo de segundo) da dinâmica do elétron em átomos, moléculas, plasmas e sólidos. Ele também fará pesquisas com lasers de intensidade ultra-alta. http://www.eli-alps.hu.

ELI-Nuclear Physics Facility

Em Magurele, Romênia, as instalações do ELI Nuclear Physics (ELI-NP) se concentram na física nuclear baseada em laser. Ele hospedará duas máquinas, um laser de altíssima intensidade, onde os feixes de dois lasers de 10 PW (Peta Watt) são somados de forma coerente para obter intensidades da ordem de 1 \times 10^{23}1 \times 10^{24} W/\mathrm{cm}^{2}, e um feixe gama brilhante muito intenso, obtido por incoerentes Espalhamento Compton de uma luz laser a partir de um feixe de elétrons brilhante de um acelerador linear convencional. As aplicações incluem experimentos de física nuclear para caracterizar a interação laser-alvo, reações fotonucleares e física nuclear exótica e astrofísica. http://www.eli-np.ro.

Buraco negro encontrado escondido em aglomerado estelar fora da nossa galáxia

Com o auxílio do Very Large Telescope (VLT) do Observatório Europeu do Sul (ESO), os astrônomos descobriram um pequeno buraco negro fora da Via Láctea ao observar a maneira como este objeto influencia o movimento de uma estrela na sua vizinhança. Trata-se da primeira vez que este método de detecção é utilizado para revelar a presença de um buraco negro fora da nossa Galáxia. Este método pode ser crucial para descobrir buracos negros escondidos na nossa Via Láctea e em galáxias próximas e nos dar pistas sobre como é que estes objetos misteriosos se formam e evoluem. Clique na imagem acima e leia a matemática completa 11/11/2021. Créditos: ESO.

Sirius – Acelerador de Luz Síncrotron de 4ª Geração Brasileiro

Acelerador brasileiro de Luz Síncrotron Sirus de 4ª geração. Clique na imagem para acessar a página completa com informações. Créditos: Projeto Sirius Brasil.

Sirius Acelerando o Futuro da Ciência Brasileira. A nova fonte de luz síncrotron brasileira, é a maior e mais complexa infraestrutura científica já construída no País. Este equipamento de grande porte usa aceleradores de partículas para produzir um tipo especial de luz, chamada, luz síncrotron. Essa luz é utilizada para investigar a composição e a estrutura da matéria em suas mais variadas formas, com aplicações em praticamente todas as áreas do conhecimento.

Sirius é uma infraestrutura aberta, à disposição da comunidade científica brasileira e internacional, desenvolvida no Centro Nacional de Pesquisa em Energia e Materiais (CNPEM) – Organização Social supervisionada pelo Ministério da Ciência, Tecnologia e Inovações (MCTI). Sirius é financiado com recursos do MCTI e projetado por pesquisadores e engenheiros do CNPEM, em parceria com a indústria nacional.

Sirius permitirá que centenas de pesquisas acadêmicas e industriais sejam realizadas anualmente, por milhares de pesquisadores, contribuindo para a solução de grandes desafios científicos e tecnológicos, como novos medicamentos e tratamentos para doenças, novos fertilizantes, espécies vegetais mais resistentes e adaptáveis e novas tecnologias para agricultura, fontes renováveis de energia, entre muitas outras potenciais aplicações, com fortes impactos econômicos e sociais.

Abaixo, apresentamos um pouco dos desafios envolvidos no desenvolvimento desta infraestrutura que promete inaugurar um novo capítulo da história da ciência brasileira, trazendo benefícios para toda a sociedade.

A Excelência Científica
no Brasil a Serviço
da Humanidade

Ao final de 2019, já era evidente a qualidade da pesquisa científica realizada no Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), uma organização social vinculada ao Ministério da Ciência, Tecnologia e Inovações (MCTI). Isso ficou ainda mais claro no cenário de pandemia do Coronavírus causador da doença Covid-19 deste ano, que mostrou mais uma vez que os recursos aplicados na ciência não são gastos, e sim, investimentos. Com o surgimento do novo coronavírus e sua disseminação por todo o planeta, vimos a importância de ter infraestrutura de pesquisa de qualidade, com cientistas e colaboradores capacitados e prontos para atender ao chamado da humanidade.

Clique na foto ao lado para leitura do livro em pdf.

A tecnologia do Sirius 4ª geração em números

Energia dos elétrons: 3 GeV
Circunferência do anel: 518,4 m
Diâmetro do anel: 165 metros
Número de linhas de luz
comportadas: 40
Emitância: 0,28 nm.rad
Área do prédio: 68000 m2
Mais de 1350 magnetos
Radiofrequência: cavidades
supercondutoras, mais de
500 kW em 500 MHz
Vácuo: mais de 1 km de
câmaras de vácuo e mais de
1300 componentes
Sistema de controle: 8000
pontos de controle e mais de
400 computadores
Túnel: mais de 500 metros com
temperatura controlada em +/- 0,1oC
Linac: quatro estruturas
aceleradoras, 90 MW
pulsados em 3 GHz
Sincronismo: Cerca de 800
sinais distribuídos
Diagnóstico: Mais de 250
monitores de posição
Proteção radiológica: 1 km de
blindagem de concreto com
0,8 a 1,5 m de espessura e
3 m de altura
Intertravamento: 4000 pontos
de monitoração
Fontes de corrente: cerca de 900
fontes e mais de 40 km de cabos
de alimentação
Infraestrutura: 700 km de
cabos elétricos
Terraplanagem: Movimentados
220 mil m3 de terra
com compactação minima
de 98%

Laboratório Nacional de Luz Síncrotron

O LNLS faz parte do Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), uma Organização Social supervisionada pelo Ministério da Ciência, Tecnologia e Inovações (MCTI).

Referências Bibliográficas

Psicanálise é considerada pseudociência!

Créditos imagem: pinimg.com

Quanto mais a ciência avança, mais precisão temos em nossos estudos e análises. Utilizando o repertório técnico científico de hoje que se atualiza e avança no tempo, as dúvidas que tínhamos sobre métodos alternativos de tratamento psicológico, que neste caso é a psicanálise, ganhou pleno status de pseudociência.

Os critérios que foram determinantes nessa classificação podem ser estudados e analisados conforme o resumo abaixo. Hoje nossa referência mais assertiva para determinar o que é ou não uma pseudociência, situasse na nova demarcação do conhecimento: CVJV.

Obs.: pseudociência é PCI (um produto de crenças em inexistentes).

Resumo

Introdução: A psicanálise já foi classificada como pseudociência no passado. Karl Popper foi um daqueles que traçou objeções à doutrina psicanalítica, usando do critério da falseabilidade. Entretanto, a falseabilidade não pode mais ser considerada suficiente para resolver o problema, já que implica em dificuldades consideráveis, e melhores alternativas para abordar a questão estão disponíveis. Objetivo: Este artigo tem por objetivo avaliar o status científico da psicanálise em relação ao problema da demarcação. Método: Para fazer isso, o critério de Sven Ove Hansson foi utilizado: este consiste em um conjunto de condições suficientes e necessárias, que é complementado com uma lista de multicritérios que auxiliam a identificar pseudociências. Foi analisado o quanto a psicanálise se encaixava em cada um dos sete itens da lista de Hansson, além de ser proposta a adição de um oitavo item. Resultados: Os resultados mostraram que a psicanálise era compatível com todos os oito itens da lista de demarcação de pseudociências. Conclusão: Ao final, a conclusão foi de que mesmo que a falseabilidade deva ser descartada, as evidências sugerem que ainda temos motivos suficientes para afirmar que a psicanálise é uma pseudociência, já que ela se distancia significativamente dos padrões de qualidade científicos.

Qual a diferença entre Ciência e Pseudociência?

A diferença reside nos métodos utilizados, a ciência usa CVJV e as pseudociências não.

Clique aqui para acesso direto ao artigo original em PDF

Referências Bibliográficas

Livro da prova (Book of Proof Third Edition) – Richard Hammack

O livro Book of Proof (Livro da Prova), é um dos melhores livros que já li sobre como compreender e aplicar a matemática do vazio { } na aquisição de conhecimento. Considero este livro o mais didático possível para compreender espaços e subespaços matemáticos – traz um conhecimento bem fundamentado sobre o estudo do conjunto vazio { }, que é obrigatório para a compreensão de sistemas complexos tais como: tecnologias atuais, estudos da simulação física, molecular, cerebral, redes neurais convolucionais biológicas e artificiais, cosmologia, física de partículas, mecânica quântica, inteligências artificiais, buracos negros, etc.

Clique na capa do livro e leia online ou em seu Smartphone. Se você usa Android, recomendo o Aplicativo Readera

{RC}

Segue exemplos do tratamento do conjunto vazio ∅ ou {}

Existe um conjunto especial que, embora pequeno, desempenha um grande papel. Um conjunto vazio ∅ ou {} é o conjunto que não possui elementos. Nós o representamos como ∅, então ∅ = {}. Sempre que você vir o símbolo ∅, ele representa {}. Observe que |∅| = 0. O conjunto vazio é o único conjunto cuja cardinalidade (número de elementos do conjunto) é zero. Tenha cuidado ao escrever o conjunto vazio. Não escreva {∅} quando você quer dizer ∅. Esses conjuntos não podem ser iguais porque ∅ não contém nada enquanto {∅} contém uma coisa – a saber – o conjunto vazio. Se isso é confuso, pense em um conjunto como uma caixa com coisas dentro; então, por exemplo, {2,4,6,8} é uma “caixa” contendo quatro números. O conjunto vazio ∅ = {} é uma caixa vazia. Em contraste, {∅} é uma caixa com uma caixa vazia dentro dela. Obviamente, há uma diferença: uma caixa vazia não é o mesmo que uma caixa com uma caixa vazia dentro dela. Assim ∅ ≠ {∅}. (Vocês também podem observar |∅| = 0 e ∣{∅}∣ = 1 como evidência adicional de que ∅ ≠ {∅}.

Aplicação prática

Exemplo 1

F = {∅,{∅},{{∅}}}

Como ler essa expressão: F é um conjunto que contém 3 coisas. Essa analogia com uma caixa pode nos ajudar a pensar sobre os conjuntos. O conjunto F = {∅,{∅},{{∅}}} pode parecer estranho, mas é realmente muito simples. Pense nisso como uma caixa contendo três coisas: uma caixa vazia, uma caixa contendo uma caixa vazia e uma caixa contendo uma caixa contendo uma caixa vazia. Assim a cardinalidade (contagem) |F| = 3. O conjunto G = {N, Z} é uma caixa contendo duas caixas, a caixa dos números naturais e a caixa dos números inteiros.

Exemplo 2

Suponha que A = {a} e B = {a, b}. Então, a diferença A∖B = {a} ∖ {a, b} = {} = ∅

A\B = {x ∈ A|x ∉ B } é o conjunto de elementos de A que não estão em B, também podemos denominar: o complementar de B em relação à A.

A diferença de A e B é o maior subconjunto de A que não contém nenhum dos elementos de B.

Como o conjunto vazio {} é um subconjunto de cada conjunto, esse é um resultado possível da subtração de dois conjuntos um do outro. Em particular, o resultado de A∖B ocorre, se e somente se A⊆B, ou (equivalentemente) se A∪B = A.

Supremo e Ínfimo do conjunto vazio ∅ ou { }

Um conjunto de números reais S é limitado acima se houver um número real M tal que x ≤ M para cada x ∈ S. Qualquer número M é chamado de limite superior para S. A definição de limitado abaixo é semelhante, e dizemos que S é limitado se for limitado acima e abaixo.

Um número x ∈ R é o supremo, ou menor limite superior de S, se x é um limite superior para S, e se y for qualquer limite superior para S, então x ≤ y.

Para o supremo, escolha um número real com a propriedade de que não existe um elemento do conjunto que o exceda. Como o conjunto está vazio, qualquer número real serve, agora comece a empurrar o número cada vez mais abaixo até que a condição seja violada. Como não há nenhum elemento do conjunto para violar a condição, você pode continuar empurrando-o cada vez mais para baixo indefinidamente – então o supremo é o “menor” valor possível −∞, raciocínio semelhante justifica que o mínimo seja + ∞. Isso é puramente heurístico.

Concordo que é contraintuitivo, é o único caso em que o supremo é menor que o ínfimo. No entanto, isso decorre da definição. Uma maneira de pensar sobre isso é que o supremo de um conjunto S é o que obtemos se pegarmos um ponto e arrastá-lo para baixo de ∞ até que ele não possa ir mais abaixo sem atingir S e o ínfimo é o que acontece se tomarmos um ponto e arrastá-lo de −∞ até que atinja S. Ou seja, meio que imaginamos S como um bloco intransitável de coisas cujo supremo e ínfimo, estão presos nas laterais dele. Mas se não há S, então não há bloqueio, e conforme prendemos esses pontos juntos, eles simplesmente passam um através do outro e continuam – eles sempre tiveram movimento para dentro, mas agora nada os impede, então eles acabam em −∞ e ∞ respectivamente, tanto quanto possível.

Uma vez que todo número real x é um limite superior para ∅, x ≥ sup ∅ para todo x ∈ R. Portanto o sup ∅ = −∞. Raciocínio semelhante fornece inf ∅ = + ∞.

Dizemos que x é o supremo de um conjunto S se x for o menor limite superior de S. Ou seja, x ≥ S para todos s ∈ S e x ≤ y para qualquer y que seja um limite superior de S. Portanto, se considerarmos ∅, todo x ∈ R é um limite superior de ∅. Portanto, o supremo de ∅ deve ser o min (R), que geralmente é −∞. Podemos raciocinar da mesma forma para o ínfimo.

Resumo de supremo e ínfimo do conjunto vazio = ∅ = { }

Considerando os reais estendidos, Re = R ∪ {− ∞, + ∞} podemos obter:

Se considerarmos ∅, todo x ∈ R um limite superior de ∅. Portanto, o supremo de ∅ deve ser o min (R), que geralmente é −∞.

Se considerarmos ∅, todo x ∈ R um limite inferior de ∅. Portanto, o ínfimo de ∅ deve ser o max (R), que geralmente é +∞.

sup ∅ = min ( { − ∞ , + ∞ } ∪ R ) = − ∞

inf ∅ = max ( { − ∞ , + ∞ } ∪ R ) = + ∞

Exemplo: ∅ ⊆ ∅

O conjunto vazio é um subconjunto de todos os conjuntos, ou seja ∅ ⊆ B para qualquer conjunto B.

Isso nos leva a um fato significativo: Se B for qualquer conjunto, então ∅ ⊆ B. Para ver por que isso é verdade, observe a frase da figura 1. Isso nos diz que: se ∅ não estivesse contido em B significaria que há pelo menos um elemento em ∅ que não é um elemento de B. Mas isso não pode ser verdade, porque não existem elementos em vazio.

Figura1. Se um conjunto finito possui n elementos, então ele possui 2^{n} subconjuntos, sendo obrigatório o ∅ fazer parte dele, ou seja, sua origem é o conjunto vazio { } = ∅.

{RC}.

Notas do autor: Richard Hammack

Meu objetivo ao escrever este livro foi criar um livro didático de alta qualidade. O livro pode ser baixado em formato PDF gratuitamente, e a versão impressa custa consideravelmente menos do que livros tradicionais comparáveis.

Nesta terceira edição, o Capítulo 3 (sobre contagem) foi expandido, e um novo capítulo sobre provas de cálculo foi adicionado. Novos exemplos e exercícios foram adicionados por toda parte. Minhas decisões em relação às revisões foram guiadas por comentários da Amazon e e-mails de leitores, e estou grato por todos os comentários.

Tenho me esforçado para garantir que a terceira edição seja compatível com a segunda. Os exercícios não foram reordenados, embora alguns tenham sido editados para maior clareza e alguns novos foram anexados. (A única exceção é que a reorganização do Capítulo 3 mudou alguns exercícios.) O capítulo sequenciamento é idêntico entre as edições, com uma exceção: o final do capítulo sobre cardinalidade tornou-se o capítulo 14, a fim de abrir caminho para o novo Capítulo 13 sobre provas de cálculo. Houve uma ligeira renumeração das seções nos capítulos 10 e 11, mas a numeração dos exercícios dentro das seções não foi alterada.

O núcleo deste livro é uma expansão e refinamento das notas de aula I desenvolvida durante o ensino de cursos de provas ao longo dos últimos 18 anos na Virgínia Commonwealth University (uma grande universidade estadual) e Randolph-Macon College (uma pequena faculdade de artes liberais). Eu encontrei as necessidades desses dois públicos quase idênticos, e escrevi este livro para eles. Mas estou atento a uma audiência maior. Eu acredito que este livro é adequado para quase todos os alunos de graduação em matemática.

O não entendimento do Vazio { } causa uma grave falha perceptiva: a crença em inexistentes, e como essa crença é nula (PCI = nulo), as pessoas que não sabem que são simulações de seus cérebros e pensam que existe algo oculto na natureza – não importa com que designação ou afirmação retratem isso – provocará uma desilusão e involução devastadora em suas vidas.

A não percepção do Vazio { } pode provocar a nulidade em sua simulação.

{RC}.

Créditos:

Referências bibliográficas

Saiba identificar PCE e PCI no campo da simulação cerebral

O que é PCE?

Defino PCE como sendo o produto das crenças em existentes. Todas as coisas que integram as leis da física são existenciais, se algo não faz parte das leis da física/natureza: pode ser apenas uma ideia, conceito, vislumbre, imaginação, projeção psicológica, etc.

Matrix – Pílula. Créditos: Boomer M

Ex: a matemática é uma invenção cérebros e não faz parte das leis da física. Isso foi provado pela teoria da incompletude de Kurt Godel.

Entretanto, muito cuidado com os dilemas – por exemplo – a crença em Deus também foi inventada pelo ser humano, mas não valida absolutamente nada, em razão de ser “o maior erro” interpretativo de nossos ancestrais na tentativa de compreender a natureza. Ao contrário da Matemática, a ciência mais importante da humanidade, 100% de todas as nossas invenções tecnológicas são validadas de forma obrigatória e sem ressalvas pela matemática.

Alusão à escolha da pílula vermelha no filme Matrix.

Obs: não é alguém que te dá a pílula (escolha por PCE), é você que decide seguir o caminho de PCE.

PCE não admite vieses, pois para que possamos chegar ao nível do conhecimento das coisas existenciais: nossas crenças, ideias, atitudes, teses e proposições, vão na direção da identificação de verdades que precisam ser válidas e justificadas.

PCE não admite dogmatismos e não segue nenhuma filosofia, tornando-se a verdade nua e crua que independe de nossos viéses, sendo necessário ter validade comprovada.

Ex: O método científico.

Observe o esboço contendo os principais passos do método científico. O método começa pela observação, que deve ser sistemática e controlada, a fim de que se obtenham os fatos científicos. O método é cíclico, girando em torno do que se denomina Teoria Científica, a união indissociável do conjunto de todos os fatos científicos conhecidos e de um conjunto de hipóteses testáveis e testadas, capaz de explicá-los. Os fatos científicos, embora não necessariamente reproduzíveis, devem ser necessariamente verificáveis. As hipóteses devem ser testáveis frente aos fatos, e para tal, falseáveis.

O método científico refere-se a um aglomerado de regras básicas dos procedimentos que produzem o conhecimento científico, quer um novo conhecimento, quer uma correção (evolução) ou um aumento na área de incidência de conhecimentos anteriormente existentes.

Alusão à pílula (metáfora) do filme Matrix – nas explicações citadas neste poste, é seu cérebro que gera e mantém toda a sua realidade e existência!

Crenças e o método científico

É importante considerar a necessidade da falseabilidade das hipóteses científicas e as consequências advindas desta restrição. Considere como exemplo as seguintes proposições: “A salamandra e o rato são anfíbios” e “A maça é verde ou não é verde”. A primeira admite os valores lógicos falso e verdadeiro, sendo possível demonstrar que seu valor lógico é em verdade falso ao constatar-se experimentalmente que o rato não é um anfíbio. Contudo, a segunda expressão não é testável pois – conforme proposta – ela sempre será verdadeira, independentemente da cor da maça obtida experimentalmente. Analise com cautela o exemplo e perceba que, em essência, frases não falseáveis não carregam informação útil (ou seria: não carregam informação alguma!?), pois uma informação sempre pode ser falsa ou verdadeira. Para tal a primeira é condizente com uma hipótese científica, a segunda não. Um exemplo de hipótese científica – testável – e até o presente momento com valor lógico verdadeiro é “O valor da velocidade da luz é uma constante e independente do referencial inercial adotado”.

Como usar PCE?

É simples e complexo ao mesmo tempo, o primeiro passo é substituir o seu sistema de crenças falho de forma progressiva via confronto do que você pensa saber com as leis da física – não é admitido qualquer tipo de dogmatismo. É uma atitude independente, um posicionamento individual – é a busca pelo autoconhecimento. Esse conhecimento não está associado a nenhuma pessoa, nem instituição, é a busca pela verdade que pode ser identificada, provada – e refutada inclusive – com os avanços progressivos de nossa ciência contemporânea. E lembre-se: não existem verdades absolutas, tipo: Deus (inexistente inventado pelas tradições retrógradas e ultrapassadas de nossos ancestrais. As pessoas insistem em acreditar nessa ideia e isso às afasta do autoconhecimento).

Por onde começar?

1 – Procure refutar seu sistema de crenças atual

Há 50% de chances de seu sistema de crenças estar errado e precisar de revisão!

2 – Não tenha dúvidas sobre a origem do conhecimento

O conhecimento é uma junção da simulação cerebral, biológica, subespacial com a realidade física – ou seja – a fundação reside no Vazio { }; ter dúvidas sobre esse assunto é natural, mas não resolver a dúvida impedirá você de alcançar um nível superior de pensamento.

3 – Identifique (EDs) erros degrau

Não importa qual sua área de atuação – ou formação, todas as áreas que representam uma aquisição formal/informal de conhecimento possuem lacunas que chamo: erros degrau – farei um poste explicando em detalhes o que são esses erros. Um exemplo: mente e mentalidade – não existem fora da simulação e são conceitos comuns – não deveriam ser usados – e impedem a evolução de nosso pensamento.

Resumo

O que é PCI?

PCI (produto das crenças em inexistentes) é responsável por todos os piores problemas e atrocidades humanas que se tem notícia, é o ponto máximo da ilusão humana. É um estado de involução, contrário à natureza do universo que está intimamente relacionado às leis da física.

Ex: todas as religiões, seitas, credos populares, sistemas políticos insustentáveis, pseudociência, criacionismo, analfabetismo, dogmatismo, crenças em entidades inexistentes: deus, deuses, espíritos, panteísmo, projeções patológicas, etc.

Como ocorre a nulidade do conhecimento?

A nulidade ocorre quando a sua fé, seu sistema de crenças não é capaz de fazer você perceber suas verdadeiras origens humanas no sentido biológico, você não é capaz de perceber o vazio { }extremamente bem fundado – e procura justificativas dentro do seu sistema de crenças falho (dogmatismo) – apelo ao viés cognitivo – e incapaz de te conectar à sua simulação (você também não sabe que é uma simulação?!) com a própria condição existencial e natural: a consciência em contato com a realidade objetiva.

A tragédia do sistema educacional

Quando alguém termina seus estudos de mestrado e até doutorado/pós-doutorado em determinada área para se tornar uma referência em educação e essa pessoa se abraça com PCI – em detrimento de PCE – isso indica que nosso sistema educacional não foi suficiente para superar a tradição retrógrada encontrada em nossa humanidade em pleno século 21.

Créditos imagem: CC {rcristo.com.br}

Não esqueça: PCE (junção da nossa simulação com a realidade física existencial) é o único caminho seguro que te levará para a aquisição plena de conhecimento, qualquer outro caminho é PCI. Nascemos e morreremos na simulação, não há acesso direto à realidade física a partir da simulação sem o filtro: CVJV (conhecimento verdadeiro, justificado e válido), não há espaços/subespaços com conexão direta de PCI para a realidade física – não há atalhos – a simulação começa em seu nascimento e acabará com a morte do cérebro decorrente da morte do corpo.

A ciência não prova nada (no sentido isolado do termo – tanto no micro quanto no macrocosmos), mas nos concede as ferramentas para que possamos alcançar a realidade existencial que chamo PCE. A ciência infere afirmações sobre a realidade. Às vezes as declarações são de impressionante precisão, às vezes são bastante vagas. Ciência nunca atinge resultados exatos (absolutos que são inexistentes). A matemática – nossa melhor invenção – fornece provas, mas é desprovida de realidade, pois a matemática não existe fora da simulação, embora as leis da física sejam cunhadas em matemática, essas leis continuam sendo da física – não podemos inventar leis da física, somente descobri-las. O universo nasceu no vazio { } com suas próprias leis da física!

Somos escravos na simulação?

Você somente será escravo na simulação se não perceber PCI – acorde do seu sono dogmático (despertar do sono dogmático é deixar de tomar como óbvio que podemos justificar pelo pensamento puro o nosso conhecimento de aspectos fundamentais da realidade física). – o simples fato dessa percepção ativará as suas redes neurais para buscar CVJV e o autoconhecimento.

E o que é uma verdade?

A verdade está lá fora? Não!
A verdade está dentro? Não!
Onde está a verdade? Em lugar nenhum! { }!

Caso a sua visão de mundo entre em conflito com os fatos e descobertas científicas ou cosmológicas, significa que está na hora de aceitar o novo paradigma (compatibilizar seus pensamentos com esse progresso), isso é natural e perfeitamente harmonioso. O caminho inverso não é verdadeiro, seus pensamentos jamais poderão negar os fatos (descobertas científicas).

{RC}

A verdade é uma composição (junção) de nossas crenças, proposições, opiniões, etc., com a realidade física. Uma verdade é uma justificativa aceitável, uma prova, razão – como síntese podemos chamar de existência!

Se ao ler este poste você conseguir notar algo errado com seu sistema de crenças – não importa sua idade ou grau educacional – conseguirá acender um palito de fósforo que pode gerar iluminação suficiente para ver o caminho até o interruptor e acender a luz na sua simulação. Perceba sua simulação e deixe de ser manipulado. {RC}.

Referências Bibliográficas

O que é viés cognitivo e como isso nos afeta?

Definição de viés cognitivo

O termo viés cognitivo foi primeiramente introduzido por Amos Tversky e Daniel Kahneman em 1972, e surgiu da experiência de ambos com a enumeracia (Incapacidade para realizar e compreender operações aritméticas simples) das pessoas, ou inabilidade do racionalizar intuitivamente com ordens de grandeza maiores. Juntamente com outros colegas, demonstraram várias maneiras replicáveis nas quais julgamentos humanos e decisões diferem da teoria da escolha racional. Eles explicaram essas diferenças pela heurística, conjunto de regras pelas quais é mais simples para o cérebro levar em conta erros sistemáticos, introduzindo-os.

Estes experimentos tornaram-se o heuristics and biases research program (programa de pesquisa de heurísticas e vieses), que logo se estendeu da psicologia acadêmica para outras áreas, como medicina e ciência política. Isso se tornou um ponto crucial no crescimento da economia comportamental, rendendo a Kahneman o Prêmio Nobel de economia em 2002. Este, mais a frente, juntamente com Tversky, desenvolveu a “teoria da expectativa” como uma alternativa mais realista à teoria da escolha racional.

Como ocorre o viés?

Ilustração do cérebro: créditos pngwings.

Um viés cognitivo (ou tendência cognitiva) é um padrão de distorção de julgamento que ocorre em situações particulares, levando à distorção perceptual, julgamento pouco acurado, interpretação ilógica, ou o que é amplamente chamado de irracionalidade.

Essa falha é causada pela incapacidade natural de nosso cérebro no processamento e assimilação das informações que recebe e processa; portanto, todos nós sem exceções, estamos sujeitos aos erros cognitivos e na maioria das vezes não percebemos que estamos cometendo esses erros.

Segue a lista de vieses e alguns comentários. Clique no título do viés para acessar as informações completas.

Viés de informação

É a tendência humana que diante de uma questão ou problema, buscar por mais informações que o necessário para tentar solucioná-lo. Causa perda de tempo e a pessoa encontra dificuldades em atingir seus objetivos.

Ex.: você sabe o caminho para chegar do ponta A ao ponto B, mas prefere seguir a informação do GPS de seu Smartphone, mesmo sabendo que o caminho mais rápido é diferente do escolhido pelo aparelho. Você confia em excesso na informação que está recebendo no momento e isso atrapalha suas decisões.

Viés de confirmação

Também chamado de viés confirmatório ou tendência de confirmação, é a tendência de se lembrar, interpretar ou pesquisar por informações de maneira a confirmar crenças ou hipóteses iniciais.

Ex.: você acredita, pensa acreditar ou aceita como verdade coisas que partem do seu imaginário de sua cultura e procura a todo custo validar essa crença.

Viés do Efeito Dunning–Kruger

Tendência de pessoas pouco qualificadas de superestimarem suas próprias habilidades. É um fenômeno que leva indivíduos que possuem pouco conhecimento sobre um assunto a acreditarem saber mais que outros melhores preparados, fazendo com que tomem decisões erradas e cheguem a resultados indevidos; é a sua incompetência que restringe sua capacidade de reconhecer os próprios erros. Estas pessoas sofrem de superioridade ilusória.

Em contrapartida, a competência real pode enfraquecer a autoconfiança e algumas pessoas muito capacitadas podem sofrer de inferioridade ilusória. Esses indivíduos podem pensar que não são muito capacitados e subestimar as próprias habilidades, chegando a acreditar que outros indivíduos menos capazes também são tão ou mais capazes do que eles. A esse outro fenômeno dá-se o nome de síndrome do impostor.

Ex.: a maioria dos políticos são incompetentes para ocupar o cargo eletivo, por não possuírem a capacidade intelectual ou formação em administrar suas posições, isso acarreta em decisões equivocadas e prejuízos para nosso país.

Dunning e Kruger propuseram que, em relação a uma determinada habilidade, as pessoas incompetentes irão:

  • falhar em reconhecer sua própria falta de habilidade;
  • falhar em reconhecer as habilidades genuínas em outras pessoas;
  • falhar em reconhecer a extensão de sua própria incompetência;
  • reconhecer e admitir sua própria falta de habilidade depois que forem treinados para aquela habilidade.

Viés da Crença em Inexistentes

Venho estudando este viés há mais de 20 anos e considero o pior de todos. Este viés é aceito por nossa cultura e estabelece como verdadeiro as orientações bíblicas em detrimento às descobertas científicas. As consequências podem ser observadas no tratamento da pandemia de coronavírus no Brasil. Os crentes em inexistentes tendem a negar a existência do vírus, preferindo a orientação dos grupos, templos, etc., ao qual fazem parte. Inclusive cometem o erro de tomar medicação inadequada para tentar conter o vírus. Leia a respeito!

O resultado do viés da crença em inexistentes é mostrado de forma nítida e objetiva, basta olhar para o gráfico abaixo:

Os países que negam a ciência e usam crenças para tratar o óbvio como o Brasil, estão vivendo o dilema e as consequências da crença em inexistentes. O coronavírus é extremamente eficiente em infectar quem nega sua existência. Clique no gráfico e observe a posição do Brasil na pandemia de coronavírus em 2021.

Estatísticas compiladas oficiais COVID19 Brasil com atualização constante

Clique neste imagem e será encaminhado para os dados atualizados.

O brasileiro é o segundo povo mais atrasado do planeta (que vergonha!)

Créditos: Observatório Terceiro Setor Fonte: IPSOS – Perigos da Percepção 2017

Os povos, assim como ocorre com o Brasil, que insistirem em acreditar em inexistentes (um grave viés cultural e educacional), estarão condenados ao fracasso em pleno século 21.

Segue orientações para estudo

Para que as coisas funcionem e possamos colocar nosso pensamento em plena harmonia no contexto atual, se faz necessário usar a integridade matemática. Por meio dessa integridade, atingiremos o conhecimento verdadeiro e justificado.

Conheça novo método para o estudo da matemática. Clique na imagem para acesso direto. Créditos: Hung-Hsi Wu

Conclusão do pensamento matemático

A matemática não admite “verdades absolutas – inexistentes”. Em vez disso, a maioria dos matemáticos trabalha dentro do sistema de axiomas conhecido como Zermelo-Fraenkel com escolha, ou ZFC para ser breve. ZFC formaliza o conceito de conjunto, uma abstração de uma coleção de objetos, chamados elementos. Acredita-se que o ZFC seja logicamente consistente e a “correção” afirmações da matemática são avaliadas de acordo com a “comprovabilidade” e “consistência lógica” em relação ao ZFC. Teoremas provados em ZFC são coloquialmente considerados “verdadeiros”. Estritamente falando; no entanto, os matemáticos não encontram verdades metafísicas, mas, em vez disso, deduzem conclusões lógicas partindo de suposições chamadas hipóteses.

Obs.: não existe matemática na natureza ou em nosso universo. A matemática foi inventada e desenvolvida por nós humanos – única civilização encontrada no universo conhecido, até o momento 03/2021!

{RC}
  • Definições: Cada conceito é definido de forma clara e precisa de modo que não haja ambiguidade sobre o que está sendo discutido.
  • Precisão: todas as afirmações são precisas, especialmente as hipóteses que garantem a validade de uma afirmação matemática, o raciocínio em uma prova e as conclusões que seguem de um conjunto de hipóteses.
  • Raciocínio: Todas as afirmações, exceto as suposições básicas inevitáveis, são apoiadas por raciocínio.
  • Coerência: Os conceitos e habilidades básicos são logicamente entrelaçados para formar um único tecido e as interconexões entre eles são reveladas de forma consistente.
  • Objetivo: O objetivo matemático por trás de cada conceito e habilidade é claramente apresentado de modo a não deixar dúvidas sobre por que está onde está.

Referências Bibliográficas

O que é espaço e subespaço? Em sentido amplo!

Ilustração de um buraco negro errante movendo-se rapidamente através de uma nuvem densa de gás. O gás é arrastado pela gravidade do buraco negro formando uma corrente estreita. Crédito: Keio University. Clique na imagem para acessar o artigo completo da Science.

Espaço e subespaço é a demarcação do conhecimento verdadeiro, justificado e válido, não é possível existir algo que esteja fora de algum espaço ou subespaço, isso inclui a fenomenologia da mecânica quântica. Em matemática espaços são definidos em termos primitivos. Em física e cosmologia espaços são projeções vetoriais e escalares em múltiplas dimensões.

Eu defino espaços e subespaços como: possibilidades existenciais seja no sentido: matemático, físico, filosófico ou conceitual.

{RC}

Em nosso universo, para que algo (qualquer coisa) exista é necessário que deva estar em algum local ou não local; isto é, precisaria residir em algum espaço ou subespaço.

Espaço físico

Por espaço físico, quero dizer o espaço revelado a nós por artefatos de medição como réguas, antenas e aparelhos avançados de medição: radiotelescópios, satélites de GPS, microscópios eletrônicos, telescópios em terra ou em órbita, etc. O espaço físico é definido de forma objetiva; isto é, as propriedades do espaço físico são amplamente independentes do observador.

Galáxia de Andrômeda M31 – Créditos: Adam Evans – the Andromeda Galaxy (now with h-alpha) Wikipedia. Clique na imagem para vê-la em alta resolução.

Espaço visual

O espaço visual é definido de forma subjetiva; isto é, as propriedades do espaço visual podem depender criticamente de certos aspectos do observador, como localização no espaço físico, condições experimentais e a capacidade cognitiva perceptiva do observador (vieses e deficiências visuais). Por exemplo: é comum aos pilotos de aviões virem OVNIs (objetos voadores não identificados), isso não significa que sejam naves extraterrestres (até o momento inexistentes).

Espaço-tempo

Na física, espaço-tempo é o sistema de coordenadas utilizado como base para o estudo da relatividade restrita e relatividade geral. O tempo e o espaço tridimensional são concebidos, em conjunto, como uma única variedade de quatro dimensões a que se dá o nome de espaço-tempo. Um ponto, no espaço-tempo, pode ser designado como um “acontecimento”. Cada acontecimento tem quatro coordenadas (t, x, y, z); ou, em coordenadas angulares, t, r, θ, e φ que ditam o local e a hora em que ele ocorreu, ocorre ou ocorrerá.

Simulação de espaço-tempo extremo (SXS) – fusão de dois buracos negros – Crédito: Projet www.black-holes.org – Caltech

A medição de um pulsar detecta arrasto de quadro

Concepção artística do arrasto de quadro onde duas estrelas giram e torcem espaço e tempo. Crédito: Mark Myers, OzGrav ARC Centre of Excellence

O arrasto de quadro é um fenômeno previsto na relatividade geral, pelo qual uma massa em rotação arrasta o espaço-tempo circundante com ela. O físico em radioastronomia Venkatraman Krishnan do Instituto Max Planck, analisou observações temporais do pulsar PSR J1141-6545, um jovem pulsar em uma órbita binária com uma anã branca. A modelagem dos tempos de chegada dos pulsos de rádio mostrou um desvio de longo prazo nos parâmetros orbitais. Depois de considerar as possíveis contribuições para essa deriva, eles concluíram que ela é dominada pelo arrastamento de quadros (o efeito Lense-Thirring) da anã branca que gira rapidamente. Essas observações verificam uma previsão da relatividade geral e fornecem restrições sobre a história evolutiva do sistema binário.

Espaço Virtual

É a infraestrutura cibernética que conhecemos pelo nome de Internet.

Espaço Matemático

Na Matemática os espaços/subespaços são os elementos que determinam as relações, funções, conjuntos, grupos e toda a abstração necessária para que exista coerência no uso da matemática. Exemplo:

Espaço Vetorial

Adição vetorial e multiplicação por escalar: um vetor v (azul) é adicionado a outro vetor w (vermelho, ilustração superior). Na imagem inferior, w está esticado por um fator de 2, acarretando a soma v + 2w.

Um espaço vetorial (também chamado de espaço linear) é uma coleção de objetos chamados vetores, que podem ser somados uns aos outros e multiplicados “escalonados” por números, denominados escalares.

Espaço da Mecânica e Física Quântica

São os mais complexos espaços e subespaços que conhecemos, correspondem ao tratamento da física de partículas. Todas as partículas subatômicas: bosons de higgs, fótons, neutrinos, elétrons, quarks, etc., residem nos subespaços quânticos cujos efeitos podem ser tratados e estudados com a utilização da matemática avançada da mecânica quântica.

Exemplo: Esfera de Block

Esfera de Bloch representando um qubit Wikipedia.

Na mecânica quântica e computação, a esfera de Bloch é uma representação geométrica do espaço de estado puro de um sistema mecânico quântico de dois níveis (qubit), em homenagem ao físico Felix Bloch. Portanto, Um bit quântico, ou qubit é uma unidade de informação quântica. A mecânica quântica é matematicamente formulada no espaço de Hilbert ou no espaço de Hilbert projetivo. Os estados puros de um sistema quântico correspondem aos subespaços unidimensionais do espaço de Hilbert correspondente (ou os “pontos” do espaço de Hilbert projetivo). Para um espaço de Hilbert bidimensional, o espaço de todos esses estados é a linha projetiva complexa ℂℙ1.

Qual a precisão das medidas espaciais e subespaciais hoje?

Essas medidas hoje possuem a máxima precisão possível dentro das perspectivas de medição utilizadas pela ciência. As réguas de luz utilizadas pelos laboratórios LIGO, conseguem uma precisão subespacial da ordem de 1/10.000 do núcleo atômico.

Ilustração de um átomo de hélio, na qual está representado o núcleo (em rosa) e a distribuição da nuvem de elétrons (em preto). O núcleo (canto sup. dir.) no hélio-4 é simétrico e assemelha-se muito à nuvem de elétrons, embora em núcleos mais complexos isto nem sempre se verifique. A escala gráfica corresponde a um ångström (10−10 m ou 100 picômetros ou ainda 1/1000.000.000.000 do metro).

Todos os nossos sistemas de medição hoje são subespaciais

Nesta imagem podemos ver a representação das 7 unidades fundamentais do sistema internacional de unidades – todas elas são subespaciais. Clique na imagem para baixar o manual explicativo sobre o novo SI – Sistema Internacional de Unidades. Em vigor desde 20 de maio de 2019. Assista ao vídeo explicativo abaixo.

A nova medida do Metro (1 dividido pelo segundo luz)

Hoje 1 metro vale = 1/SL (uma unidade subespacial do segundo luz). Corresponde ao espaço linear percorrido pela luz no vácuo durante um intervalo de tempo correspondente a 1/299 792 458 de segundo (299 792 458 m/s-1, e que continua sendo o metro padrão na perspectiva dos avanços científicos atuais.

Segundo-luz é uma subunidade de comprimento utilizada em astronomia e corresponde à distância percorrida pela luz no vácuo em um segundo. Seu plural é segundos-luz. Para se calcular o valor de 1 segundo-luz em quilômetros é necessário saber que a velocidade da luz no vácuo é de 299.792.458 metros por segundo (m/s) e que o tempo utilizado na definição é o segundo. Assim temos que o segundo-luz vale 299.792.458 metros (aproximadamente 300 mil quilômetros); ou ainda 0,002 UA (Unidades Astronômicas).

Obs: quando a constante de medição contiver um expoente negativo, significa unidade subespacial.

Os benefícios para humanidade com a detecção das Ondas Gravitacionais

Na física, as ondas gravitacionais são ondulações na curvatura do espaço-tempo que se propagam como ondas, viajando para o exterior a partir da fonte. Elas são incrivelmente rápidas, viajam à velocidade da luz (299 792 458 quilômetros por segundo) e espremem e esticam qualquer coisa em seu caminho ao passarem. O Observatório de Onda Gravitacional de Interferômetro de Laser (LIGO), conta com ajuda de mais de 1 000 cientistas colaboradores, a construção de ambos observatórios um em Washington e o outro na Louisiana custaram cerca de US$ 1 bilhão e foram financiados pela National Science Foundation. Um novo ramo da ciência nasceu com esta descoberta, a Astronomia de Ondas Gravitacionais.

Os benefícios para a humanidade são ilimitados, agora sabemos com extrema precisão, como funcionam os espaços e subespaços e principalmente, validamos o último legado de Albert Einstein, sua teoria da relatividade geral se tornou completa. {RC}.

Referências bibliográficas