Qual a diferença entre Conhecimento, Informação e Dados? – Comece 2022 com essas dúvidas resolvidas!

Desejo a todos um 2022 repleto de experiências incríveis, muita saúde, foco em crescimento e constante aquisição de conhecimento. Por falar nisso, não poderia deixar de resumir esse assunto com base nas minhas últimas pesquisas. Boa leitura!

{RC}.

O que é conhecimento?

Conhecimento, do latim cognoscere (ato de conhecer), como a própria origem da palavra indica, é o ato ou efeito de conhecer. Como por exemplo: conhecimento das leis, conhecimento de um fato, conhecimento de um documento, termo de recibo ou nota em que se declara o aceite de um produto ou serviço; saber, instrução ou cabedal científico (homem com grande conhecimento), informação ou noção adquiridas pelo estudo ou pela experiência, (autoconhecimento) consciência de si mesmo.

No conhecimento temos dois elementos básicos: o sujeito (cognoscente) e o objeto (cognoscível), o cognoscente é o indivíduo capaz de adquirir conhecimento ou o indivíduo que possui a capacidade de conhecer. O cognoscível é o que se pode conhecer.

Qual a origem do conhecimento?

A origem é o núcleo de nossa capacidade de adquirirmos conhecimentos, reside nos espaços/subespaços subjacentes. Você poderá ler os detalhes técnicos no meu outro poste: Qual a origem do conhecimento? A resposta é o conjunto ∅

Crítica à teoria CVJ e contraexemplos de Edmund Gettier

O conhecimento pode ser compreendido como uma “crença verdadeira justificada (CVJ)”, isto é, um dado sujeito tem uma crença – opinião – essa crença é verdadeira e o sujeito tem boas razões para a justificativa. Assim sendo, crença, verdade e justificação são condições necessárias para que se constitua conhecimento, mas apenas no seu conjunto são suficientes. Crença é uma condição necessária pois não é possível conhecer sem acreditar. Por outro lado, esta não constitui uma condição suficiente pois esta não passa de uma opinião, podendo, então, ser falsa, saber/conhecer é, portanto, diferente de acreditar. Verdade é uma condição necessária uma vez que o conhecimento é factivo (expressa a verdade), ou seja, não se podem conhecer falsidades. No entanto esta não é por si só uma condição suficiente, dado que podemos acreditar em alguma coisa que é verdadeira sem que saibamos que esta é verdadeira. Justificação é uma condição necessária já que é necessário haver boas razões nas quais apoiar a verdade de uma crença. Contudo a justificação não é por si uma condição suficiente, porque ter razões para acreditar em algo não garante que essa crença seja verdadeira.

A (V)alidação de CVJ torna-se obrigatória

Ao analisar os contraexemplos de Gettier, podemos perceber sem sombra de dúvidas que CVJ (Crença Verdadeira e Justificada), é insuficiente para definir conhecimento. Um quarto critério se faz necessário: a validação pós justificativa).

É importante distinguir entre casos de conhecimento e casos de crença meramente verdadeira, mais especialmente porque um erro de julgamento, neste caso, significa o confisco ou a continuação da vida de outro ser humano. É, portanto, seguro dizer que, neste e em outros casos semelhantes, não sustentar a distinção acima mencionada é desastroso não apenas na lógica epistêmica, mas também moralmente.

A coesão definitiva de CVJV, subespaços e teoria da simulação cerebral

Para tornar o conhecimento coeso e adaptado às tecnologias atuais, fiz adição da teoria da simulação cerebral com subespaços – embora isso torne o tema um pouco complexo -, considero de extrema importância para evitar o chamado ED (Erro Degrau). Esse erro é o principal causador das falhas educacionais, principalmente em países do terceiro mundo como no Brasil.

Um exemplo de erro degrau: pensar que a energia é transmitida por dentro dos fios elétricos quando na verdade é por fora deles (nos subespaços eletromagnéticos) – segue as provas nas referências bibliográficas, tratarei desse assunto breve em um novo poste.

Como nasceu a teoria da informação?

A origem da informação ou teoria da informação nasceu com o particionamento binário de espaço proposto por Shannon. Leia meu resumo em: Teoria da informação e entropia – como passamos do conhecimento para a informação?

Convenções sobre operações indexadas no conjunto vazio

  • Somas vazias = 0
  • Produtos vazios = 1
  • Uniões vazias = ∅
  • Interseções vazias = o conjunto universo
  • Permutações vazias = 1

O conjunto vazio { } = ∅ determina a origem dos microestados ou da informação que será medida.

{RC}.

O que são dados?

Um conjunto de informações que depende da forma (espacial ou subespacial) e tipo (estruturados ou não estruturados). Ex: uma letra, uma palavra, símbolos matemáticos, uma página de texto, um livro em formato pdf, um livro em papel, uma planilha, um formulário em papel ou online, etc. Os dados podem ser classificados no tipo: estruturados e não estruturados.

Resumo Epistemológico

Referências Bibliográficas

Teoria da informação e entropia – como passamos do conhecimento para a informação?

O que é entropia nos termos da física?

Dente de leão simbolizando a entropia. Créditos: www.pngwing.com.

Entropia (do grego εντροπία, entropia), unidade [J/K] (joules por kelvin), é uma grandeza termodinâmica que mede o grau de liberdade molecular de um sistema, está associado ao seu número de configurações (ou microestados), ou seja, de quantas maneiras as partículas (átomos, íons ou moléculas) são distribuídos em níveis energéticos quantizados, incluindo translacionais, vibracionais, rotacionais e eletrônicos. Entropia também é geralmente associada à aleatoriedade, dispersão de matéria e energia, e “desordem” (não em senso comum) de um sistema termodinâmico. A entropia é a entidade física que rege a segunda lei da termodinâmica, à qual estabelece que a ela deve aumentar para processos espontâneos e em sistemas isolados. Para sistemas abertos, deve-se estabelecer que a entropia do universo (sistema e suas vizinhanças) deve aumentar devido ao processo espontâneo até o meio formado por sistema + vizinhanças atingir um valor máximo no estado de equilíbrio. Neste ponto, é importante ressaltar que vizinhanças se entende como a parte do resto do universo capaz de interagir com o sistema, através de, por exemplo: trocas de calor.

Função da entropia binária, ensaio de Bernoulli, princípio da entropia máxima. Créditos: http://www.pngwing.com.

A distribuição de Bernoulli, nome em homenagem ao cientista suíço Jakob Bernoulli, é a distribuição discreta do espaço amostral {0, 1}, que tem valor 1 com a probabilidade de sucesso p e valor 0 com a probabilidade de falha q = 1 − p.

Resumo:

  • P(1) = p
  • P(2) = q
  • p + q = 1
  • q = 1 − p

Se X é uma variável aleatória com essa distribuição, teremos:

P(X=1)=1-P(X=0)=1-q=p

Um exemplo clássico de uma experiência de Bernoulli é uma jogada única de uma moeda. A moeda pode dar “coroa” com probabilidade p ou “cara” com probabilidade 1 − p. A experiência é dita justa se p = 0.5, indicando a origem dessa terminologia em jogos de apostas (a aposta é justa se ambos os possíveis resultados têm a mesma probabilidade).

Gelo derretendo. (C) WiKi.

Uma definição formal de entropia em termos de possibilidade é: entropia é uma medida aditiva do número de possibilidades disponíveis para um sistema. Assim, a entropia de um sistema físico é uma medida aditiva do número de microestados possíveis que podem ser realizados pelo sistema. E a entropia de uma fonte de mensagem é uma medida aditiva do número de mensagens possíveis que podem ser escolhidas dessa fonte de mensagens.

Obs.: com a morte de um organismo vivo, a entropia do organismo aumenta. À medida que o interior morre, seus restos são espalhados pelo vento. No entanto, mesmo nesta morte, novas possibilidades são distribuídas.

Entropia na teoria da informação

A falta de informação é uma medida da informação necessária para escolher um microestado específico de um conjunto de microestados possíveis ou uma mensagem de uma fonte de mensagens possíveis. Ao passo que a incerteza pode ser entendida como a falta de informação sobre uma questão de interesse para um determinado agente (por exemplo, um tomador de decisão humano ou uma máquina), uma condição de conhecimento limitado em que é impossível descrever exatamente o estado do mundo ou sua evolução futura. Portanto, podemos representar essa origem como:

μ(∅) = 0

O significado dessa fórmula é: a entropia do vazio ∅ (origem do conhecimento) é zero 0.

A teoria da informação lógica cumpre precisamente a máxima de Kolmogorov. Ele começa simplesmente com um conjunto de distinções definidas por uma partição (divisão) em um conjunto finito U, onde uma distinção é um par ordenado de elementos de U em blocos distintos da partição – podemos representar isso como Probabilidade/Subespaços. Assim, o objeto “combinatório finito” é o conjunto de distinções (“distset”) ou conjunto de informações (“infoset”) associado à partição – Informação/Partição; ou seja, o complemento em U × U da relação de equivalência associada à partição. Para obter uma medida quantitativa de informação, qualquer distribuição de probabilidade em U define uma medida de probabilidade do produto de U × U, e a entropia lógica é simplesmente essa medida de probabilidade no conjunto de informações. Esta descrição motivacional da teoria da informação lógica será agora desenvolvida em detalhes.

O conceito de incerteza desempenha um papel semelhante. Quanto maior e mais variado o conjunto a partir do qual um sistema pode ser escolhido e quanto maior e mais variada a fonte da mensagem da qual uma mensagem pode ser extraída, mais incerto será o resultado e mais alta será a entropia. A entropia lógica é a medida (no sentido técnico não negativo da teoria da medida) de informações que surgem da lógica de partição assim como a teoria da probabilidade lógica surge da lógica de subconjuntos (subespaços).

Entropia de Shannon

Representação da origem do conhecimento μ(∅) = 0 com o particionamento binário proposto por Shannon. Créditos imagem: CC {rcristo.com.br}

Consequentemente, a entropia de Shannon é interpretada como o número médio do limite de bits necessários por mensagem. Em termos de distinções, este é o número médio de partições binárias necessárias para distinguir as mensagens.

Podemos representar a entropia de Shannon pela fórmula:

H(p)=\sum_{k=1}^{m} p_{k} \log _{2}\left(\frac{1}{p_{k}}\right)

Considere uma árvore binária de três níveis, onde cada ramo se divide em dois ramos equiprováveis em cada nível, como em 2^{3}=8, folhas são as mensagens, cada uma com probabilidade \frac{1}{8}. Uma entropia multiplicativa de Shannon é o número de mensagens equiprováveis 2^{3}=8, e a entropia de Shannon é o número de decisões binárias ou bits \log \left(2^{3}\right)=3 necessários para determinar cada mensagem que, neste exemplo canônico, é o comprimento do código binário de cada mensagem.

Máquina de Galton

Tabuleiro de Galton em movimento. Créditos Wikipédia.

Se pensarmos na árvore como uma máquina de Galton com bolinhas de gude caindo da raiz e tomando um dos galhos com igual probabilidade, então a probabilidade de alcançar qualquer folha em particular é, obviamente, \frac{1}{8}. A entropia lógica é a probabilidade de que em duas tentativas diferentes a bola de gude alcance folhas diferentes.

h (p) = 1 − 8 × \left(\frac{1}{8}\right)^{2}=1-\frac{1}{8}=\frac{7}{8}

Entropia como possibilidade é uma palavra adequada e, ao contrário da incerteza e da falta de informação, tem conotação positiva. Assim, de acordo com a segunda lei da termodinâmica, um sistema termodinâmico isolado sempre evolui no sentido de abrir novas possibilidades. E quanto maior o conjunto de possibilidades a partir do qual um microestado ou uma mensagem podem ser realizados ou escolhidos, maior será a entropia do sistema físico ou a entropia de Shannon da fonte da mensagem.

Convenções sobre operações indexadas no conjunto vazio

  • Somas vazias = 0
  • Produtos vazios = 1
  • Uniões vazias = ∅
  • Interseções vazias = o conjunto universo
  • Permutações vazias = 1

O conjunto vazio { } = ∅ determina a origem dos microestados ou da informação que será medida.

{RC}.

A medida direta é a entropia lógica que é a medida quantitativa das distinções feitas por uma partição. A entropia de Shannon é uma transformação ou reunificação da entropia lógica para a teoria matemática das comunicações. O matemático Andrei Kolmogorov sugeriu que as informações devem ser definidas independentemente da probabilidade, de modo que a entropia lógica é definida pela primeira vez em termos do conjunto de distinções de uma partição e, em seguida, uma medida de probabilidade no conjunto define a versão quantitativa da entropia lógica.

A entropia de Shannon é frequentemente apresentada como sendo a mesma que a entropia de Boltzmann.

Conectividade espacial e subespacial

Trabalhamos com um espaço métrico que entendemos como um plano complexo, a menos que especificado de outra forma. A letra Ω denotará um conjunto aberto no espaço métrico, consequentemente, uma região é simplesmente conectada se e somente se seu complemento no plano complexo estendido estiver conectado. Assim, uma região é simplesmente conectada se e somente se não tiver orifícios. Este é um critério muito transparente para determinar se uma região está simplesmente conectada ou não.

Para qualquer conjunto finito U, uma medida μ (lê-se: mi é a décima segunda letra do alfabeto grego) é uma função μ: ℘ (U) → R tal que:

μ(∅) = 0,

para qualquer E ⊆ U, μ (E) ≥ 0, e

para quaisquer subconjuntos disjuntos E1 e E2, μ (E1 ∪ E2) = μ (E1) μ (E2).

Seja X um espaço métrico e E ⊆ X, começamos com uma definição de conectividade

Definição: um conjunto E é conectado se E não puder ser escrito como uma união disjunta de dois subconjuntos abertos relativos não vazios de E. Assim, E = A ∪ B com A ∩ B = ∅ e A, B aberto em E implica que A = ∅ ou B = ∅. Caso contrário, E = A ∪ B é chamado de separação E em conjuntos abertos. Por exemplo, a união E de dois discos abertos separados A e B não está conectada, pois:

E = A ∪ B = (A ∪ B) ∩ E = (A ∩ E) ∪ (B ∩ E)

onde A ∩ E e B ∩ E não estão vazios, disjuntos e relativamente abertos em E. Como em C, um conjunto conectado aberto em um espaço métrico é chamado de região.

Definição: um subconjunto máximo conectado de E é chamado de componente de E. Para a ∈ E, seja C(a) a união de todos os subconjuntos conectados de E contendo a. Observamos que a ∈ C (a) uma vez que {a} está conectado e:

E=\bigcup_{a \in E} C(a)

Fornecemos algumas propriedades de C(a).

(i) C(a) está conectado.

A prova é por contradição. Seja C(a) = A ∪ B uma separação de C(a) em conjuntos abertos. Podemos assumir que a ∈ A e b ∈ B. Então, como b ∈ C(a) e C(a) é a união de todos os subconjuntos conectados de E contendo a, existe E0 ⊆ E tal que E0 ⊆ C(a) está conectado e a ∈ E0, b ∈ E0. Por isso:

E0 = E0 ∩ C (a) = E0 ∩ (A ∪ B) = (E0 ∩ A) ∪ (E0 ∩ B)

implica que ou E0 ∩ A = ∅ ou E0 ∩ B = ∅. Isso é uma contradição, pois a ∈ E0 ∩ A e b ∈ E0 ∩ B.

Assim, cada componente de E tem a forma C(a) com um ∈ E.

Os componentes de E são disjuntos ou idênticos.

Seja a, b ∈ E. Suponha que C(a) ∩ C(b) = ∅. Então provamos que C(a) = C(b). Seja x ∈ C(a) ∩ C(b). Então x ∈ C(a). Como C(a) está conectado, deduzimos que C(a) ⊆ C(x). Então a ∈ C(x) que implica C(x) ⊆ C(a) já que C(x) está conectado. Assim, C(a) = C(x). Da mesma forma C(b) = C(x) e, portanto, C(a) = C(b).

Os componentes de um conjunto aberto são abertos

Seja E um conjunto aberto. Basta mostrar que C(a) com a ∈ E está aberto. Seja x ∈ C(a).

(ii) Então C(x) = C(a).

Como x ∈ E e E é aberto, existe r > 0 tal que D(x, r) ⊆ E. De fato, D(x, r) ⊆ C (x) já que D(x, r) está conectado contendo x. Assim, x ∈ D(x, r) ⊆ C(a) e, portanto, C(a) é aberto.

Ao combinar (i), (ii) concluímos: um conjunto aberto em um espaço métrico é uma união disjunta de regiões.

Para os pontos P0, P1, …, Ps no plano complexo, escrevemos [P0, P1, …, Ps] para o caminho poligonal obtido unindo P0 a P1, P1 a P2, …, Ps− 1 a Ps por segmentos de linha. Agora fornecemos um critério fácil de aplicar para mostrar que os conjuntos no plano estão conectados.

Seja E um subconjunto aberto não vazio de C. Então E é conectado se e somente se quaisquer dois pontos em E podem ser unidos por um caminho poligonal que está em E.

Prova: Suponha que E está conectado. Como E = ∅, seja a ∈ E. Seja E1 o subconjunto de todos os elementos de E que podem ser unidos a a por um caminho poligonal. Seja E2 o complemento de E1 em E. Então:

E = E1 ∪ E2 com E1 ∩ E2 = ∅, a ∈ E1.

É suficiente mostrar que E1 e E2 são subconjuntos abertos de E. Então E2 = ∅ visto que E está conectado e a ∈ E1. Assim, cada ponto de E pode ser unido a a por um caminho poligonal que fica em E. Portanto, quaisquer dois pontos de E podem ser unidos por um caminho poligonal que fica em E via a.

Primeiro, mostramos que E1 está aberto. Seja a1 ∈ E1. Então a1 ∈ E e como E está aberto, encontramos r1 > 0 tal que D(a1, r1) ⊆ E. Qualquer ponto de D(a1, r1) pode ser unido a a1 e, portanto, a a por um caminho poligonal que fica em E desde a1 ∈ E1. Assim, a1 ∈ D(a1, r1) ⊆ E1. A seguir, mostramos que o E2 está aberto. Seja a2 ∈ E2. Novamente encontramos r2 > 0 de modo que D(a2, r2) ⊆ E visto que E está aberto. Agora, como acima, vemos que nenhum ponto deste disco pode ser unido a a como a2 ∈ E2 e, portanto, a2 ∈ D(a2, r2) ⊆ E2. Agora assumimos que se quaisquer dois pontos de E podem ser unidos por um caminho poligonal em E, mostramos que E está conectado. Deixe:

E = E1 ∪ E2

Seja uma separação de E em conjuntos abertos. Não há perda de generalidade em assumir que existem pontos a1 ∈ E1 e a2 ∈ E2 tais que:

χ (t) = ta1 (1 – t) a2 com 0 <t <1

é um segmento aberto de a2 a a1 situado em E. Deixe:

V = {t ∈ (0, 1)|χ(t) ∈ E1} e W = {t ∈ (0, 1)|χ(t) ∈ E2}.

Vimos que V e W estão abertos em (0, 1). Além disso, temos a separação do intervalo aberto (0, 1) em conjuntos abertos (0, 1) = V ∪ W, V ∩ W = ∅

Como a1 ∈ E1 e E1 está aberto, existe r3 > 0 com D(a1, r3) ⊆ E1. Isso implica V = ∅. Da mesma forma W = ∅. Portanto, o intervalo (0, 1) não está conectado. Isso é uma contradição.

Partições Young

Para uma partição λ, o diagrama de Young da forma λ é um diagrama justificado à esquerda |λ| em caixas, com λi caixas pretas na i-ésima coluna, denotamos o conjunto de todos os diagramas Young contidos em um k × (m − k) caixa por Tk,m−k \mathcal{T}_{m}=\cup_{k=0}^{m}

Por exemplo, os diagramas de Young no conjunto T2,2 são dados por:

O conjunto T3 é dado por:

Observe que cada diagrama de Young em Tm pode ser obtido de um diagrama de Young em Tm−1 adicionando uma coluna vazia à sua direita ou uma linha preenchida antes de sua primeira linha. Por exemplo, as partições obtidas da partição λ = ∅ ∈ T1,2 são dadas por 1 ∈ T2,2 e ∅ ∈ T1,3. Assim, o número de diagramas de Young no conjunto Tm é dado por 2m. A seguir, identificamos uma partição e seu diagrama Young associado.

Para qualquer partição λ = λ1 ··· λk, definimos λ∗ como a partição λ∗ = (λ1 + 1)(λ2 + 1)··· (λk + 1) e λ∗ como a partição λ∗ = λ1 ·· · λk0.

Em outras palavras, λ ∗ é o diagrama de Young que é obtido de λ adicionando uma linha preenchida antes da primeira linha de λ, e λ ∗ é o diagrama de Young que é obtido de λ adicionando uma coluna vazia no lado direito de λ.

O que são dados?

O significado de dados é: um conjunto de informações que depende da forma (espacial ou subespacial) e tipo (estruturados ou não estruturados). Ex: uma letra, uma palavra, símbolos matemáticos, uma página de texto, um livro em formato pdf, um livro em papel, uma planilha, um formulário em papel ou online, etc. Os dados podem ser classificados no tipo: estruturados e não estruturados.

Obs.: um livro em papel é um dado espacial, um livro em PDF ou EPUB é um dado subespacial.

O principal objetivo das minhas pesquisas é esclarecer você leitor para que se proteja dos absurdos conceituais que os influenciadores da própria internet estão disseminando o tempo todo; 100% de tudo o que você leu, ouviu, assistiu, etc., precisa de provas contundentes (referências lógicas válidas), para alcançar CVJV, caso contrária não terá validade.

Claude Shannon

Em 1948, publicou o importante artigo científico intitulado A Mathematical Theory of Communication July, October, 1948 – C. E. SHANNON enfocando o problema de qual é a melhor forma para codificar a informação que um emissor queira transmitir para um receptor.

Clique na foto de Shannon (Courtesy of MIT Museum) e baixe em PDF seu mais importante trabalho.

A matemática é a linguagem com a qual escrevemos as partituras que representam a realidade percebida (universo), cujo pano de fundo é a entropia, a origem do conhecimento é o vazio { } e a informação é a possibilidade da representação que pode ser compactada em espaços e subespaços.

{RC}.

Referências Bibliográficas

Basic Analysis (análise básica) I e II – 9 de Novembro, 2021- Jiri Lebl

Os livros análise matemática básica I e II (clique nas capas dos livros para abrir em seus dispositivos) permitem uma compreensão clara e objetiva das técnicas utilizadas na aprendizagem da matemática com uma base mínima e necessária para que possamos adentrar em temas um pouco mais complexos.

Nenhuma pergunta pode ficar sem resposta, então leia e releia os livros I e II para aprimorar seu conhecimento em análise.

Esta ciência é a base estrutural para a plena aquisição de conhecimentos. Sem matemática, não entenderíamos as outras ciências, da física à economia, da química à biologia. Lembre-se: sem matemática o conhecimento não pode ser adquirido, se você duvida? Saiba que a maioria dos livros de análise matemática começam com a compreensão do conjunto vazio { }, não poderia ser diferente, pois o ∅ é a origem da matemática e, por conseguinte, de todas as outras coisas.

Exemplo: A = {x | P(x)}

Essa expressão define A como o conjunto de todos os objetos x possuindo a propriedade P (x). Isso geralmente é lido como “A é igual ao conjunto de todos os elementos x, de modo que P (x)”.

Se A for qualquer conjunto, o conjunto de todos os subconjuntos de A é denotado por P (A). O conjunto P (A) é às vezes referido como o conjunto de potência de A. Por exemplo, se A = {1, 2}, então:

P(A) = {∅, {1}, {2}, {1, 2}}.

Neste exemplo, o conjunto A tem 2 elementos e P(A) tem 4 ou \mathrm{2}^{2} elementos, os elementos neste caso são subconjuntos de A. Se tomarmos um conjunto com 3 elementos, então listando os subconjuntos de A é facilmente percebido que existem exatamente \mathrm{2}^{3} subconjuntos de A. Com base nesses dois exemplos, estamos inclinados a conjeturar que, se A contém 2 elementos, então P (A) contém \mathrm{2}^{2} elementos.

Obs: um par ordenado da forma: (a,b) = {{a}, {a, b}}

Uma definição teórica do conjunto de par ordenado pode ser dada como: (a, b) = {{a}, {a, b}}. Com esta definição, dois pares ordenados (a, b) e (c, d) são iguais se e somente se a = c e b = d.  {RC}.

Os Transfinitos de Cantor. Créditos: M3 Matemática Multimídia

Alfabeto Grego utilizado de forma plena em toda a matemática

α AAlphaι IIotaρ ϱ PRho
β BBetaκ KKappaσ ΣSigma
γ ΓGammaλ ΛLambdaτ TTau
δ ΔDeltaμ MMuυ ΥUpsilon
𝜖 ε EEpsilonν NNuϕ φ ΦPhi
ζ ZZetaΞξCsiχ XQui
η HEtao OOmicronψ ΨPsi
θ 𝜗 ΘThetaπ ΠPiω ΩÔmega
A matemática é representada pelo alfabeto grego. Clique nas letras para saber o seu significado.

O que é análise em matemática?

Análise é o ramo da matemática que lida com desigualdades e limites. O curso atual – tratado nos livros em anexo – lida com os conceitos mais básicos em análise. O objetivo do curso é familiarizar o leitor com provas rigorosas na análise e também para estabelecer uma base sólida para o cálculo de uma variável (e vários variáveis ​​se o volume II também for considerado).

O cálculo que você aprendeu – aluno/autodidata – ensinou a matemática sem lhe dizer por que o que você aprendeu é verdade. Para usar ou ensinar matemática de forma eficaz, você não pode simplesmente saber o que é verdade, você deve saber por que isso é verdade. Este curso mostra porque o cálculo é verdadeiro. Está aqui para lhe dar uma boa compreensão do conceito de limite, derivada e integral.

Vamos usar uma analogia. Um mecânico de automóveis que aprendeu a trocar o óleo, consertar os faróis quebrados, e carregar a bateria, só será capaz de fazer essas tarefas simples. Mas, será incapaz de trabalhar de forma independente para diagnosticar e corrigir problemas. Um professor do ensino médio que não entende a definição da integral de Riemann ou da derivada pode não ser capaz de responder adequadamente a todas as perguntas dos alunos. Até hoje eu me lembro de várias declarações sem sentido que ouvi do meu cálculo por professores no ensino médio, que simplesmente não entendia o conceito de limite, embora pudessem “resolver” os problemas do livro didático.

Começamos com uma discussão sobre o sistema de números reais, mais importante, sua propriedade e completude, que é a base de tudo o que vem depois. Em seguida, discutiremos a forma mais simples de um limite, o limite de uma sequência. Posteriormente, estudaremos as funções de uma variável, continuidade e a derivada. Em seguida vamos definir a integral de Riemann e provar o teorema fundamental do cálculo. Discutiremos sequências de funções e de intercâmbio de limites. Finalmente, damos uma introdução aos espaços métricos.

Deixe-nos dar a diferença mais importante entre análise e álgebra. Na álgebra, provamos igualdades diretamente; provamos que um objeto, talvez um número, é igual a outro objeto. Em análise, geralmente provamos desigualdades e provamos essas desigualdades por meio de estimativas. Para ilustrar este ponto, considere a seguinte declaração.

Seja x é um número real. Se x < ε {epsilon) for verdadeiro para todos os números reais ε > 0, então x ≤ 0.

Esta afirmação é a ideia geral do que fazemos em análise. Suponha que a seguir realmente desejamos provar a igualdade x = 0. Em análise, provamos duas desigualdades: x ≤ 0 e x ≥ 0. Para provar a desigualdade x ≤ 0, provamos x < ε para todos os ε positivos. Para provar a desigualdade x ≥ 0, provamos x > −ε para todos os ε positivos.

O termo análise real é um pouco confuso. Prefiro usar simplesmente: análise. O outro tipo de análise – análise complexa – realmente se baseia no material presente, ao invés de ser distinto. Além disso, um curso mais avançado sobre análise real falaria frequentemente sobre números complexos. Eu suspeito que a nomenclatura seja bagagem histórica.

Vamos continuar o show!

Créditos: Jiří Lebl

A compactação de espaços/subespaços

Os buracos negros são corpos astronômicos que conseguem compactar o espaço-tempo ao infinito, também podemos usar a matemática inventada por nós e fazer algo aproximado com aplicação na ciência/tecnologia.

SOC (System On Chip – Sistema em um Chip) M1 Max Apple

Chip M1 Max Apple. Créditos Apple.

Ex: O SOC (System On Chip – sistema em um chip) M1 Max: conta com 32 núcleos de processamento compactados no espaço de 432 \mathrm{ mm}^{2} com 57 bilhões de transistores em subespaços.

A partir deste poste para que seja possível compreender os assuntos mais técnicos tais como: RF (Rádio Frequência), fluxo cognitivo, subespaços métricos e não métricos, dobras espaciais, ondas gravitacionais, simulação cerebral, mecânica quântica, etc.; sem o conhecimento em análise matemática, o tema seria complexo demais para o leitor não versado nesse assunto: compreendê-lo.

Este estudo é recomendado para todas as idades e níveis educacionais, a única exigência é saber ler em inglês.

{RC}.

Referências Bibliográficas

Conceitos básicos em matemática (noção de primitivas)

Na foto da Big Lousa (grande quadro em sala de aula), podemos perceber a matemática expressada em toda a sua magnitude. Créditos foto (internet).

O que é Matemática?

É a ciência do raciocínio lógico e abstrato, que estuda quantidades, medidas, espaços, estruturas, variações e estatísticas. Também é a ciência mais importante em razão de ser a fundamentação do conhecimento. Toda base tecnológica é fundamentada em matemática, caso sua aprendizagem seja deficitária ficaria muito difícil avançar na aquisição de conhecimento, compreendendo todas as áreas estudadas.

Conceitos básicos

A matemática não existe na natureza – nosso universo não é matemático -, é uma tremenda invenção do pensamento, um produto da cultura que foi amplamente inspirado pela natureza, especialmente durante a gestação da matemática na Suméria. Em contraste com a realidade e em contraste com os fenômenos naturais, a matemática é puramente conceitual. Certos objetos da natureza e certos fenômenos naturais, como o horizonte, favos de mel hexagonais, ritmos naturais, objetos em número ou ondas na superfície da água, podem sugerir que a matemática existe na natureza. De fato, esses objetos e esses fenômenos, chamados de naturais, são irregulares, imperfeitos e não devem ser confundidos com objetos matemáticos perfeitos e que obedecem às leis estritas: a matemática simplifica construindo conjuntos de objetos matemáticos, os quais têm as mesmas propriedades. (1)

A descoberta de verdades não rigorosas é o que nos leva para a contrução (invenção) de rigorosos termos (matemáticos) que são úteis, abrindo as portas para mais descobertas nebulosas.

3blue1brown

Realidade e natureza

Por exemplo, a matemática defende que todos os indivíduos, que fazem parte de uma população de bactérias, são semelhantes; enquanto cada bactéria está em sua condição adequada, a qual difere da seguinte (condição fisiológica, interação com seu ambiente próximo, possível interdependência); mas sem essas simplificações da realidade, o estudo de bactérias seria impossível e o Universo seria ininteligível para nós. (1)

Este é um restabelecimento do antigo princípio latino Pars Pro Toto (verdadeiro para a parte significa verdadeiro para o todo). No entanto, o princípio do PPT é verdadeiro em matemática: em um conjunto matemático, todos os elementos são isomórficos (idênticos) e isonômicos (obedecem às mesmas leis), a menos que o conjunto seja particionado de alguma maneira. (1)

Por não existir na natureza, a matemática tem uma integridade interessante: ao contrário da política, economia, arte e filosofia, não há matemática de esquerda ou de direita; não há matemática aliada ao marxismo, nem fiel a nenhuma religião em particular; e também não favorece nenhuma cultura, espécies ou espécie em particular. Por sua própria essência, a matemática proíbe pontos de vista ideológicos, atitudes intelectuais, preconceitos ou convicções predeterminadas. Em sua aparente frieza, a matemática é vertical, mas não neutra, porque fica na linha de frente na luta contra o analfabetismo (sem conhecimento mínimo) e o obscurantismo (crença em inexistentes), na medida em que é uma maneira verdadeiramente excepcional de entender e inventar coisas. (1)

A matemática – nossa melhor invenção – fornece provas, mas é desprovida de realidade, pois a matemática não existe fora da simulação, embora as leis da física sejam cunhadas em matemática, essas leis continuam sendo da física – não podemos inventar leis da física, somente descobri-las.

A origem da matemática

Algumas formas matemáticas muito básicas emergem no início do neolítico, AEC 7000 anos atrás; suas origens, em várias culturas, são diversas, poligênicas. No Curdistão iraquiano, estratos arqueológicos desse período retornaram pequenas cerâmicas esféricas, cilíndricas ou cônicas, chamadas de cálculos, destinadas a manter contas. Os cálculos parecem ser os arquivos contábeis mais antigos. Assim, eles deram origem a um sistema com um futuro promissor: administração. Deveria ser visto como um passo em direção à abstração, porque os cálculos já eram representações quantificadas e codificadas. No início da era neolítica, com esse modelo aritmético pequeno e elementar representado pelos cálculos, nossos ancestrais inventaram um dos primeiros modelos matemáticos. Seixos pintados, encontrados em Mas-d’Azil em Ariège (França, 9000 AEC), são interpretados como auxiliares de memória e provável precursor de cálculos. (1)

Artefatos matemáticos

A ideia aqui é combinar matemática e natureza, a fim de avaliar algum aspecto deste último, usando conceitos e modelos matemáticos. Nota importante: os artefatos matemáticos representam a realidade, mas não são a realidade: essa é precisamente a diferença entre realidade e artefatos matemáticos. (1)

Elementos primitivos

Em matemática, lógica, e sistemas formais, uma noção primitiva é um conceito indefinido. Em particular, a noção primitiva não é definida em termos de conceitos previamente definidos, é apenas motivada informalmente, geralmente por um apelo à intuição e a experiência cotidiana. Em um sistema axiomático ou outro sistema formal, o papel de uma noção primitiva é análoga ao de um axioma; portanto, é muito importante! Teorias formais não podem prescindir (vir sem ou ignorar) noções primitivas, sob pena de regresso ao infinito (circularidade).

Um ponto é aquilo que não tem partes.

Euclides: Os Elementos, Livro I.

Neste livro, o conceito de “ponto” não é primitivo, pois é definido por meio do conceito de “parte” que é primitivo, não recebe definição.
Um conceito pode ser primitivo em um contexto mas não em outro. Como exemplo, em psicologia, as cores geralmente são conceitos primitivos, pois o significado das cores provém unicamente do sentido da visão (e portanto a única maneira de ensinar o que significa precisamente a palavra azul, é mostrando algo dessa cor), mas no contexto da física, elas têm definições em termos de comprimentos de ondas eletromagnéticas.

Clique na foto ao lado para baixar o Livro em PDF. Créditos Unesp: archive.org

Conceitos primitivos formam a base representativa da matemática, são eles:

Espaço e subespaço

Espaços são possibilidades existenciais seja no sentido: físico, matemático, conceitual ou filosófico, representativo, etc. Todo espaço contém subespaços em seu interior. Não há existências fora de um espaço e a nossa capacidade de conhecer depende de um espaço que começa vazio. Em física o espaço não vem sozinho, é mesclado com o tempo para formar o espaço-tempo. {RC}.

Foi nossa capacidade cognitiva que ao inventar a ciência matemática nos proporcionou essa maravilhosa concepção. (consulte BEM-FUNDADO).

{RC}.

Obs: as leis/regras/lógicas/abstrações da matemática foram inventadas por nós no decorrer de milênios da evolução de nosso raciocínio, enquanto as leis da física foram descobertas. Um exemplo é o número Zero = 0, inventado há mais ou menos 2600 anos.

Espaços também podem ser:

Representação

Na teoria dos conjuntos representamos os espaços da seguinte forma:

{ espaço aberto

} espaço fechado

{ } espaço vazio ou ∅

{ { } } um espaço com subespaço interior

{∅} espaço vazio topológico

Ponto

Em Matemática, particularmente na Geometria e na Topologia, um ponto {.} é uma noção primitiva pela qual outros conceitos são definidos. Um ponto determina uma posição no espaço. Na Geometria, pontos não possuem volume, área, comprimento ou qualquer dimensão semelhante. Assim, um ponto é um objeto de dimensão 0 (zero). Um ponto também pode ser definido como uma esfera de diâmetro zero.

Geometria euclidiana

Nos Elementos de Euclides, um ponto é definido como “o que não tem partes”. Isto significa: o que caracteriza um ponto é a sua posição no espaço. Com o aparecimento da geometria analítica, passou a ser possível referir-se a essa posição através de coordenadas.

Geometria projetiva

Na geometria projetiva, um ponto é um elemento de um espaço projetivo, ou seja, é uma reta.

Topologia

Em topologia, um espaço topológico é um conjunto de pontos, aos quais está associada uma noção de proximidade. No entanto, existe uma abordagem recente da topologia, chamada a topologia sem pontos, que estuda os espaços topológicos sem se referir aos pontos que os constituem. Esta abordagem enquadra-se na teoria das categorias.

Reta

A linha reta é aquela que se estende igualmente entre seus pontos, podemos afirmar que é uma medida (distância) entre pontos.

As retas vermelha e azul neste gráfico têm o mesmo declive; as retas vermelha e verde têm a mesma interceptação em y (cruza o eixo y no mesmo local).

Curva

Uma espiral, um exemplo simples de curva.

Tecnicamente, uma curva é o lugar geométrico ou trajetória seguida  por um ponto que se move de acordo com uma ou mais leis especificadas, neste caso, as leis comporão uma condição necessária e suficiente para a  existência do objeto definido. Frequentemente há maior interesse nas  curvas em um espaço euclidiano de duas dimensões (curvas planas) ou três dimensões (curvas espaciais). Em tópicos diferentes dentro da matemática o termo possui  significados distintos dependendo da área de estudo, então o sentido  exato depende do contexto. Um exemplo simples de uma curva é a espiral,  mostrada acima à esquerda. Um grande número de outras curvas já foi bem estudado em diversos campos da matemática.

Plano (geometria)

Um plano é um ente primitivo geométrico infinito à duas dimensões. Nos Elementos de Euclides, não possui definição enquanto conceito genérico. Mas um plano qualquer é definido, ou determinado, de várias formas equivalentes. Na foto ao lado vemos três planos paralelos.

Acima da esquerda para a direita: o quadrado, o cubo e o tesserato. O quadrado bidimensional (2d) é delimitado por linhas unidimensionais (1d); o cubo tridimensional (3d) por áreas bidimensionais; e o tesserato quadridimensional (4d) por volumes tridimensionais. Para exibição em uma superfície bidimensional, como uma tela, o cubo 3D e o tesserato 4d exigem projeção.

Dimensão

Na física e na matemática, a dimensão de um espaço matemático (ou objeto) é informalmente definida como o número mínimo de coordenadas necessárias para especificar qualquer ponto dentro dela. Assim, uma reta  tem uma dimensão de um (1) porque apenas uma coordenada é necessária  para especificar um ponto nela – por exemplo, o ponto no 5 em uma reta  numérica. Uma superfície como um plano ou a superfície de um cilindro ou esfera tem uma dimensão de dois porque duas coordenadas são necessárias para especificar um ponto nela – por exemplo, uma latitude e uma longitude são necessárias para localizar um ponto na superfície de uma esfera. O interior de um cubo, um cilindro ou uma esfera é tridimensional porque são necessárias três coordenadas para localizar um ponto dentro desses espaços.

As primeiras quatro dimensões espaciais, representadas em uma figura bidimensional.
  1. Dois pontos podem ser conectados para criar um segmento de reta.
  2. Dois segmentos de linha paralela podem ser conectados para formar um quadrado.
  3. Dois quadrados paralelos podem ser conectados para formar um cubo.
  4. Dois cubos paralelos podem ser conectados para formar um tesserato.

Na mecânica clássica, espaço e tempo  são categorias diferentes e referem-se a espaço e tempo absolutos (conceitos superados pela física da relatividade e pela mecânica quântica). Essa concepção de mundo é um espaço de quatro dimensões, mas não o que foi  considerado necessário para descrever o eletromagnetismo. As quatro dimensões do espaço-tempo consistem em eventos que não são absolutamente definidos espacial e temporalmente, mas são conhecidos em relação ao movimento de um observador. O espaço de Minkowski primeiro se aproxima do universo sem gravidade; as variedades pseudo-riemannianas da relatividade geral descrevem o espaço-tempo com a matéria e a gravidade. Dez dimensões são usadas para descrever a teoria das cordas, onze dimensões podem descrever a supergravidade e a teoria-M, e o espaço de estados da mecânica quântica é um espaço de função de dimensão infinita. O conceito de dimensão não se restringe a objetos físicos. Espaços de alta dimensão frequentemente ocorrem na matemática e nas ciências. Eles podem ser espaços de parâmetros ou espaços de configuração, como na mecânica lagrangiana ou hamiltoniana; estes são espaços abstratos, independentes do espaço físico em que vivemos.

Um sistema de coordenadas cartesianas de três dimensões.

Obs: É importante observar que a dimensão está vinculada à forma como o espaço se apresenta.

Tesserato e Hipercubo

Um tesserato (ou tesseracto), octácoro regular ou hipercubo de quatro dimensões é um polícoro (polítopo de quatro dimensões) regular, é o polícoro dual do Hexadecácoro e é análogo ao cubo (que é um poliedro, um polítopo de três dimensões) e ao quadrado (que é um polígono, um polítopo de duas dimensões). Um octácoro apresenta vértices (pontos), arestas (linhas), faces (planos) e células (sólidos).

Para representarmos geometricamente um hipercubo de quarta dimensão, devemos fazer uso da analogia: para formarmos um quadrado, unimos dois segmentos de reta paralelos e de mesmo comprimento através de seus extremos por outros dois outros segmentos de reta. Para representarmos um cubo, unimos os vértices de dois quadrados por quatro segmentos de reta. Para representarmos um hipercubo, unimos todos os vértices de dois cubos por segmentos de reta, conforme sugere a imagem ao lado.

O Tesserato é um cubo projetado em 4 dimensões.

O tesserato é um análogo ao quadrado e ao cubo, mas com quatro dimensões. Para entendermos a quarta dimensão, é necessário relembrarmos rapidamente alguns conceitos de geometria. O primeiro conceito é o ponto. Um ponto é a representação geométrica de posição no espaço, e não possui dimensões (nem altura, nem comprimento, nem profundidade); ou seja, é impossível “medir” um ponto. Um ponto que se move em uma direção gera um segmento de reta. Uma linha que se desloca produz ou uma linha mais longa, ou uma área, se ela se move em direção perpendicular à sua direção anterior, ela gera um retângulo; e, se a distância for a mesma que, a que o ponto se deslocou, um quadrado. Um quadrado, movendo-se nesta mesma distância em uma direção perpendicular, gera um cubo. Para mover o cubo, não podemos visualizar em que direção ele se moveria, assim como uma terceira dimensão seria invisível a habitantes presos à superfície de uma mesa, mas supondo-se que existisse uma direção perpendicular às três dimensões, e que o cubo se deslocasse nesta dimensão da mesma distância padrão, a figura gerada seria um tessarato.

Bijeção e função bijetiva

Uma função bijetiva, função bijetora, correspondência biunívoca ou bijeção, é uma função injetiva e sobrejetiva (injetora e sobrejetora).

Uma função bijetiva injetiva e sobrejetiva ao mesmo tempo).

Função injetiva, mas não sobrejetiva (portanto não é bijetiva).

Função sobrejetiva, mas não injetiva (portanto não é bijetiva).

Função nem injetiva nem sobrejetiva (portanto não é bijetiva).

Cardinalidade

Na matemática, a cardinalidade de um conjunto é uma medida do “número de elementos do conjunto”. Por exemplo, o conjunto A={2,4,6,8,10} contém 5 elementos e por isso possui cardinalidade 5. Existem duas abordagens para cardinalidade – uma que compara conjuntos diretamente, usando funções bijetoras e funções injetoras, e outra que usa números cardinais.

Obs: A cardinalidade de um conjunto A é usualmente denotada |A|, com uma barra vertical de cada lado; trata-se da mesma notação usada para valor absoluto, por isso o significado depende do contexto.

Comparação de conjuntos

Caso 1: |A|=|B|

Dois conjuntos A e B possuem a mesma cardinalidade se existe uma bijeção, ou seja, uma função que seja simultaneamente injetora e sobrejetora, entre eles. Por exemplo, o conjunto E={0, 2, 4, 6, …} dos números pares não-negativos tem a mesma cardinalidade do conjunto N={0, 1, 2, 3, …} dos números naturais, uma vez que a função f(n)=2n é uma bijeção de N para E.

Caso 2: |A|≥|B|

|A|tem cardinalidade maior ou igual que a cardinalidade de B se existe uma função injetora de A para B.

Caso 3: |A|>|B|

|A| tem cardinalidade estritamente maior do que a cardinalidade de B se existe uma função injetora de A para B, mas não existe nenhuma função bijetora de B para A.

Obs: Em teoria dos conjuntos, dois conjuntos são equipotentes se possuem a mesma cardinalidade; ou seja, se há uma bijeção entre os conjuntos.

Dedekind-infinito

Na matemática, especialmente na teoria de conjuntos, um conjunto A é Dedekind-infinito ou infinito de Dedekind se A é equipotente a um subconjunto próprio. Um conjunto é Dedekind-finito se ele não é Dedekind-infinito. O nome provém do matemático alemão Richard Dedekind, que definiu “infinito” dessa maneira no seu famoso artigo de 1888, o que são e o que precisam ser os números.

Infinito

Infinito (do latim infinítu, símbolo: ∞) é a qualidade daquilo que não tem fim. O símbolo de infinito ∞ é por vezes chamado de lemniscata, do latim lemniscus. John Wallis é creditado pela introdução do símbolo em 1655 no seu De sectionibus conicis. Uma conjectura sobre o porquê ter escolhido este símbolo é ele derivar de um numeral romano para 1000 que, por sua vez foi derivado do numeral etrusco para 1000, que se assemelhava a CIƆ e era por vezes usado para significar “muitos”. Outra conjectura é que ele deriva da letra grega ω – Omega – a última letra do alfabeto grego. Também, antes de máquinas de composição serem inventadas, ∞ era facilmente impresso em tipografia usando o algarismo 8 deitado sobre o seu lado.

Referências Bibliográficas

Pare de acreditar em inexistentes – Coronavírus é a prova de que o nosso sistema de crenças (sem ciência) acabou!

A ciência é nossa única alternativa para continuarmos sobrevivendo em nosso próprio planeta.

Assista ao desabafo do professor de biologia Samuel Cunha, morador de Curitiba – Pr, sobre a importância do investimento em educação e principalmente na ciência. O professor Cunha tem um canal no YouTube, siga o canal e aprenda muito com suas vídeo aulas de Biologia e Virologia.

O Coronavírus é a prova de que nenhum sistema de crenças poderá parar a disseminação do vírus, nem trazer curas; ao contrário, colocará em perigo a população não importa em qual país você more.

A ciência tem a última palavra em tudo o que podemos imaginar, medir, usar, estudar, descobrir, criar, evoluir, e até mesmo: pensar, etc. A filosofia é importante para podermos fazer as perguntas, mas é a ciência que têm as provas e respostas; a religião e crenças no geral, induzem ao autoengano das pessoas menos esclarecidas e colocam a sobrevivência do ser humano em xeque!

Abandone seu sistema de crenças (com relação principalmente às religiões, seitas, crendices populares, superstições, etc.), pare de acreditar em inexistentes que nada podem fazer por você, pela sua vida e principalmente pelo futuro da humanidade.

Na falta da ciência, a extinção do ser humano é inevitável. {RC}.

Créditos vídeo: Professor Samuel Cunha.

Cartilha de Finanças Pessoais: Baixe o Livro

Clique na foto para download direito em Pdf.

Esta Cartilha de Finanças Pessoais ensina os princípios básicos de leitura nessa área de conhecimento, é uma compilação elementar de Educação Financeira. Seu objetivo é servir como um guia didático no planejamento da vida financeira de seus leitores.

Blog Cidadania & Cultura

Com a edição revista e ampliada desta Cartilha de Finanças Pessoais – 2019 completei dezoito livros organizados no período desfrutado de Licenças-Prêmio e férias acumuladas. Você os encontrará para download gratuito na aba acima denominada Obras (Quase) Completas.

Ver o post original 158 mais palavras

Calcule corretamente a velocidade de sua internet em Mbits/s para MB/s

Os pacotes de internet oferecidos pelas operadoras no geral utilizam a métrica: Mega bits por segundo (Mbps), significa que em 1 segundo, o valor correspondente a 1 megabit (1.000.000 bits) é transmitido na velocidade da luz do ponto de origem ao ponto de destino.

Utilize a seguinte métrica para saber o valor correto dessa velocidade em Mega Bytes (MB)

  • 1 Byte é igual a 8 bits
  • 1 Mbits/s equivale a 1000 bits x 1000 bits = 1.000.000 bits/s
  • 1000.000 bits dividido por 8 (bits) = 125.000 bytes
  • 125.000 divido por 1.000.000 = 0,125 MB (Mega Bytes), saiba mais sobre bytes aqui!
  • 1 Mbits/s = 0,125 MB/s lê-se: “zero, vírgula, cento e vinte e cinto mega bytes por segundo”.

Obs: 1 bit equivale a 2 estados 0 e 1 (binário), 1 byte = 8 bits = Log2 8 (logaritmo de 8 na base binária 2). Computadores clássicos (os nossos) trabalham com matemática binária (bits), computadores quânticos (em desenvolvimento nos laboratórios avançados) trabalham com matemática quântica (qubits).

Ex: meu plano contratado atual é de 50 Mbits/s então minha velocidade de internet em MB/s (Mega Bytes por segundo) é igual a: 50 x 0,125 ou ainda 50/8 = 6,25 MB/s. Ou seja, para eu poder enviar (upload) um arquivo de 10 megas de peso, nessa velocidade, levaria o tempo de 10/6,25 = 1,6 segundos.

Segue a medição realizada pelo site: Copel Speed Teste Adsl

Ao clicar na imagem acima a página teste será aberta.

Sensor WiFi TP-Link Archer T1U (5 GHZ) 433 Mbits/s utilizado na medição

Esse dispositivo utiliza a velocidade da banda (frequência) base 5 GHZ, velocidade de transmissão de dados 433 Mbits/s = 54,125 MB/s é cerca de nove vezes mais rápido que uma internet fibra 50 Mbits/s. Clique na imagem para mais informações.

Fonte: Units of information

The Future of Humanity (O futuro da Humanidade) – Com Yuval Noah Harari

Obs: caso a legenda em português não apareça, clique no ícone legenda na área inferior do vídeo para ativá-la, em seguida clique na engrenagem: escolha a opção Legendas e Português(Brasil).

Ao longo da história houve muitas revoluções: na tecnologia, economia, sociedade, política. Mas uma coisa sempre permaneceu constante: a própria humanidade. Ainda temos os mesmos corpos, cérebros e as mesmas mentes que nossos antepassados na China antiga ou na Idade da Pedra. Nossas ferramentas e instituições são muito diferentes das do tempo de Confúcio, mas as estruturas profundas do corpo humano e da mente permanecem as mesmas. No entanto, a próxima grande revolução da história mudará isso. No século XXI, haverá constantes inovações na tecnologia, economia, política. Mas, pela primeira vez na história, a própria humanidade também sofrerá uma revolução radical, não somente em nossa sociedade e economia, mas nossos corpos e mentes serão transformados por novas tecnologias como engenharia genética, nanotecnologia, realidade virtual, realidade expandida e interfaces cérebro-computador. Yuval Noah Harari tem um doutorado em História pela Universidade de Oxford e agora leciona no Departamento de História na Universidade Hebraica em Jerusalém, especializada em História Mundial. Autor do livro Sapiens: Uma Breve História da Humanidade, publicada em 2014, ficou na lista de best-sellers do Sunday Times por mais de seis meses em brochura, foi um dos mais vendidos do New York Times e publicado em quase 40 idiomas no planeta.

Comentários sobre o autor e seus livros no Blog: Fernando Nogueira Costa.

Fontes: The Royal Institution

Samsung lança super rápidos cartões de memória Micro SD UFS 256 GB

Samsung UFS 256GB

Fonte: Samsung (divulgação)

A Samsung acaba de lançar os novos cartões Micro SD UFS (Universal Flash Storage), “Armazenamento Universal em Flash”, com capacidades de 32, 64, 128 GB. Esses cartões são compatíveis com os novos Smartphones Galaxy S7, S7 Edge e Note 6(7?), também serão compatíveis com com Tablets e as principais câmeras APSC de vários fabricantes. O modelo de 256 GB será compatível a princípio com o Galaxy Note 6(7?), mas ainda não é compatível com modelos anteriores. Os chips são feitos com tecnologia proprietária Samsung 3D V-NAND e um controlador ultra-pequeno.

Smartphones e outros dispositivos compatíveis com o padrão UFS ganham um poder de armazenamento até 10 vezes mais rápido, podendo transferir vídeos de 5GB Full HD em 12 segundos, disse a empresa. Aos poucos os chips NAND Flash, principalmente os EMMC, que ainda utilizam memórias lentas LPDDR3, serão substituídos pelas rápidas memórias LPDDR4 e padrão de armazenamento em UFS.

Samsung Galaxy S7

Fonte: Samsung (divulgação)

Vários produtos lançados no segundo semestre/2016 serão compatíveis com esse novo padrão que aumenta a capacidade e velocidade de acesso aos dados de: Smartphones, Tablets, Câmeras digitais e principalmente dispositivos de realidade virtual e realidade aumentada.

A fabricante Samsung é um membro ativo do JEDEC na definição do padrão UFS 2.0 desde setembro de 2013 e também cartões UFS 1.0 desde março 2016.

Créditos: Zdnet
Créditos: Samsung

Transcendent Man (O homem transcendente) – Ray Kurzweil – Documentário Completo

Raymond Kurzweil, mais conhecido como Ray, é um inventor e cientista dos Estados Unidos. Em 1968, ainda estudante do MIT, Kurzweil fundou uma empresa que usava um programa de computador para combinar estudantes de ensino médio com universidades. Ele comparava milhares de critérios sobre cada instituição de ensino com respostas de questionários respondidos pelo próprio estudante. Aos vinte anos, vendeu sua empresa para a Harcourt, Brace & World por cem mil dólares mais royalties. Raymond recebeu BS em ciência da computação e literatura em 1970.

Ray, tem planos ousados de viver para sempre e segue uma dieta radical tomando 200 comprimidos com suplementos alimentares todos os dias. Atualmente sua principal atividade é reuniões, palestras e pesquisas sobre o momento onde atingiremos a singularidade em nosso avanço tecnológico.

Segue e-books recomendados

The Age of Spiritual Machines
The Singularity Is Near
Transcend
How to Create a Mind

Obs: leitor de Epub Mac/PC- Adobe Digital Editions

No dispositivo móvel recomendo: Readera Epub PDF Leitor

Créditos: Consciência Universal