Arquivo da categoria: Simbologia

Conheça Plimpton 322 – um tablete de argila com escrita cuneiforme babilônica datado em 3800 anos


Plimpton 322 é um tablete de argila parcialmente quebrado medindo cerca de 13 centímetros de largura, 9 centímetros de altura, e 2 centímetros de espessura.

Origem do tablete Plimpton 322

O editor nova-iorquino George A. Plimpton comprou o tablete a partir de um vendedor de arqueologia, Edgar J. Banks, provavelmente em 1922, e o doou com o resto de sua coleção para Columbia University, no meio da década de 1930. De acordo com os Banks, os tabletes vieram de Senkereh, um local ao sul do Iraque correspondente à antiga cidade de Larsa.
Acredita-se que tenha sido escrito por volta de 1800 AEC (antes da era comum), baseado em parte no estilo utilizado na escrita cuneiforme: Robson (2002) afirma que esta forma de escrita “é típica de documentos do sul do Iraque de 4000–3500 anos atrás”. Mais especificamente baseando-se em similaridades de formato com outros tabletes de Larsa que possuem datas explícitas, Plimpton 322 pode ser datado entre o período de 1822–1784 AEC.
 
Foram encontrados aproximadamente meio milhão de tabletes (tabelas) de argila babilônicas escavadas desde o início do Século XIX, sendo que milhares são de natureza matemática. Provavelmente o mais famoso destes exemplos de matemática babilônica seja a tabela Plimpton 322, referindo-se ao fato de ter o número 322 na coleção G.A. Plimpton da Columbia University. Esta tabela, acredita-se ter sido escrita no Século XVIII AEC (antes da era comum), possui uma tabela de 4 colunas e 15 linhas de números em escrita cuneiforme do período. Pesquisadores de Sydney, em 2017, concluíram que as quatro colunas e as 15 fileiras de cuneiformes representam a tabela de trabalho trigonométrico mais antiga e mais precisa do mundo, uma ferramenta de trabalho que poderia ter sido usada na topografia e no cálculo de templos, palácios e pirâmides.
 

Os números

A

B (LARGURA)

C (DIAGONAL)

D

1.59:00:15 = 1.983402777777778

1:59 = 119

2:49 = 169

1

1.56:56:58:14:50:06:15 = 1.949158552088692

56:07 = 3367

1:20:25 = 4825

2

1.55:07:41:15:33:45 = 1.918802126736111

1:16:41 = 4601

1:50:49 = 6649

3

1.53:10:29:32:52:16 = 1.886247906721536

3:31:49 = 12709

5:09:01 = 18541

4

1.48:54:01:40 = 1.815007716049383

1:05 = 65

1:37 = 97

5

1.47:06:41:40 = 1.785192901234568

5:19 = 319

8:01 = 481

6

1.43:11:56:28:26:40 = 1.719983676268861

38:11 = 2291

59:01 = 3541

7

1.41:33:45:14:03:45 = 1.692709418402778

13:19 = 799

20:49 = 1249

8

1.38:33:36:36 = 1.642669444444444

8:01 = 481

12:49 = 769

9

1.35:10:02:28:27:24:26:40 = 1.586122566110349

1:22:41 = 4961

2:16:01 = 8161

10

1.33:45 = 1.5625

45

1:15 = 75

11

1.29:21:54:02:15 = 1.489416840277778

27:59 = 1679

48:49 = 2929

12

1.27:00:03:45 = 1.450017361111111

2:41 = 161

4:49 = 289

13

1.25:48:51:35:06:40 = 1.430238820301783

29:31 = 1771

53:49 = 3229

14

1.23:13:46:40 = 1.38716049382716

28

53

15

O conteúdo principal do Plimpton 322 é uma tabela de números, com quatro colunas e quinze linhas, em notação sexagesimal babilônica. A quarta coluna é apenas uma linha de números em ordem de 1 a 15. Com exceção da quarta coluna, os números das três colunas restantes correspondem aos cálculos trigonométricos de um triângulo retângulo a² + b² = c².
 
Interpretações matemáticas
 
Blogado anteriormente por Anthony Dekker segue tradução abaixo:
 
 
Contendo quatro colunas de números, escritas na base 60 (com um pequeno número de erros, bem como alguns números faltando por danos – estes são corrigidos abaixo). Por exemplo, 1,59: 00: 15 = 1 + 59/60 + 0/3600 + 15/216000 = 1,983402777777778.
 
A coluna B do quadrado (com uma etiqueta no quadrado contendo a palavra “largura”) é um dos lados de um triângulo pitagórico, e a coluna C (com uma etiqueta no quadrado contendo a palavra “diagonal”) é a hipotenusa, tal que C² – B² é sempre um quadrado perfeito (amarelo no diagrama). A coluna A é exatamente igual a C² / (C² – B²), a proporção de azul para amarelo.
 
O que essa tabela representa?
 
Uma boa discussão é de Eleanor Robson [“Palavras e imagens: nova luz sobre Plimpton 322”, American Mathematical Monthly, 109 (2): 105–120]. Robson acredita que Plimpton 322 se encaixa na matemática babilônica padrão e interpreta isso como um esforço do professor para produzir uma lista de problemas de classe.
 
Especificamente, Robson acredita que a tabela foi gerada tomando valores de x (em ordem decrescente de x) de tabelas recíprocas padrão babilônicas, especificamente os valores: 2:24, 2:22:13:20, 2:20:37:30, 2:18:53:20, 2:15, 2:13:20, 2:09:36, 2:08, 2:05, 2:01:30, 2, 1:55:12, 1:52:30, 1:51:06:40, e 1:48, e depois usando o relacionamento: (x − 1 / x)² + 22 = (x + 1 / x)² para gerar triplos pitagóricos. Se nós deixarmos: y = (x − 1 / x) / 2 e z = (x + 1 / x) / 2, então B e C são múltiplos de y e z, e A = z² / (z² − y²).
 
Recentemente, Daniel F. Mansfield e N. J. Wildberger [“Plimpton 322 é trigonometria sexagesimal exata babilônica”, Historia da Matemática, on-line 24 de agosto de 2017] interpretam a tabela como proto-trigonometria. Eu acho a explicação deles da primeira coluna (“uma relação quadrada relacionada que pode ser usada como um índice”) não convincente, no entanto. Por que um índice tão complexo? Robson chama essas interpretações trigonométricas de “conceitualmente anacrônicas” e aponta que não há outra evidência de que os babilônios estejam fazendo trigonometria.
 
Mansfield e Wildberger também sugerem que “os números no P322 são grandes demais para permitir que os estudantes obtenham razoavelmente as raízes quadradas das quantidades necessárias”. No entanto, eu não acho que isso seja verdade. Os babilônios adoravam calcular. Usando o algoritmo de raiz quadrada padrão, até mesmo estimativas iniciais simplistas para as raízes quadradas dos números na coluna A fornecem convergência em 2 ou 3 etapas a cada vez. Por exemplo, para obter a raiz quadrada de 1.59: 00: 15 (1.983402777777778), começo com 1.30: 00: 00 (1.5) como uma suposição. Isso dá 1.24: 40: 05 como a próxima iteração, depois 1.24: 30: 01 e depois 1.24: 30: 00 (1.408333333333333), que é a resposta exata. Dito isso, no entanto, o cálculo dessas raízes quadradas não era realmente necessário para os problemas de classe previstos por Robson.
 
Infelizmente, não acho que Mansfield e Wildberger tenham defendido. Acredito que Robson ainda está correto no significado desse tablete.

Plimpton 322 é trigonometria sexagesimal exata da Babilônia. Fonte: sciencedirect.com

Matemática Babilônica

Matemática Babilônica (também conhecido como Matemática Assírio-Babilônica) se refere a qualquer forma de matemática desenvolvida pelos povos da Mesopotâmia, desde os dias dos antigos Sumérios até a queda da Babilônia em 539 aec.

O grande poder da matemática – documentários observatório do mundo

Para muitos, a matemática que aprendemos na escola parece uma série de regras estabelecidas pelos antigos e que não podem ser questionadas. O matemático Jordan Ellenberg nos mostra como essa visão é enganadora. A matemática não se limita a incidentes abstratos. Ela está em tudo que tocamos e vivemos, e se relaciona a questões do nosso cotidiano. Munidos dos instrumentos matemáticos adequados, podemos saber o verdadeiro significado de informações que antes considerávamos inquestionáveis. Quanto tempo antes devemos chegar ao aeroporto para não perder o voo? Há um método infalível para ganhar na loto? Aliás, é um bom negócio ganhar na loto? Como se devem contar os votos numa eleição democrática? As pesquisas eleitorais são confiáveis? Por que pais altos têm filhos mais baixos que eles? As respostas que a matemática dá a essas e outras perguntas surpreendem, mas Ellenberg guia o leitor pelo aparente emaranhado de argumentos, lançando mão do raciocínio matemático e expondo para os leigos os avanços da disciplina, sem os jargões próprios da área e com exemplos sucintos e casos históricos engraçados.

Fonte: YouTube

Créditos: São Paulo TV

Elementos de Lógica Matemática e Teoria dos Conjuntos – Jaime Campos Ferreira

Capa - Elementos de lógica matemática e teoria dos conjuntos - Jaime Campos Ferreira

Clique na imagem para Ler/Baixar o Livro em PDF (divulgação).

Considero a lógica o assunto mais importante no campo da matemática, com ela refinamos nosso pensamento e alinhamos o entendimento para assuntos complexos. A lógica é imprescindível em todas as etapas de estudo, deveria receber mais atenção nas diversas fases de nossa aprendizagem.

Elementos de lógica matemática

Para melhor compreender as definições e teoremas que constituem as teorias Matemáticas cujo estudo vamos iniciar, é indispensável habituarmo-nos a usar uma linguagem mais precisa e rigorosa do que a que se utiliza, em geral, na vida corrente. A aquisição desse hábito pode ser facilitada pelo conhecimento de algumas noções e símbolos da Lógica Matemática, estudada neste livro, de forma muito resumida e largamente baseada na intuição. Convém, no entanto, observar que a Lógica Matemática tem hoje aplicações concretas extremamente importantes, em diversos domínios; uma das mais notáveis é, sem dúvida, a sua utilização no planeamento dos modernos computadores quânticos, tabletes e, principalmente os ditos “telefones inteligentes – Smartphones”.

Autor: Jaime Campos Ferreira

Fonte: IST

Simbologia matemática

Símbolo Nome lê-se como Categoria
+
adição mais aritmética
4 + 6 = 10 significa que se se somar 4 a 6, a soma, ou resultado, é 10.
Exemplo: 43 + 65 = 108; 2 + 7 = 9
subtração menos aritmética
9 – 4 = 5 significa que se se subtrair 4 de 9, o resultado será 5. O sinal – é único porque também denota que um número é negativo. Por exemplo, 5 + (-3) = 2 significa que se se somar cinco e menos três, o resultado será dois.
Exemplo: 87 – 36 = 51

implicação material implica; se … então lógica proposicional
AB significa: se A for verdadeiro então B é também verdadeiro; se A for falso então nada é dito sobre B.
→ pode ter o mesmo significado de ⇒, ou pode ter o significado que mencionamos mais abaixo sobre as funções
x = 2  ⇒  x² = 4 é verdadeiro, mas x² = 4   ⇒  x = 2 é em geral falso (visto que x pode ser −2)

equivalência material se e somente se lógica proposicional
AB significa: A é verdadeiro se B for verdadeiro e A é falso se B é falso
x + 5 = y + 2  ⇔  x + 3 = y
conjunção lógica e lógica proposicional
a proposição AB é verdadeira se A e B foram ambos verdadeiros; caso contrário, é falsa
Exemplo: n < 4  ∧  n > 2  ⇔  n = 3 quando n é um número natural
disjunção lógica ou lógica proposicional
a proposição AB é verdadeira se A ou B (ou ambos) forem verdadeiros; se ambos forem falsos, a proposição é falsa
Exemplo: n ≥ 4  ∨  n ≤ 2  ⇔ n ≠ 3 quando n é um número natural
¬
/
negação lógica não lógica proposicional
a proposição ¬A é verdadeira se e só se A for falso
Uma barra colocada sobre outro operador tem o mesmo significado que “¬” colocado à sua frente
Exemplo: ¬(AB) ⇔ (¬A) ∨ (¬B); xS ⇔  ¬(xS)
quantificação universal para todos; para qualquer; para cada lógica predicativa
∀ x: P(x) significa: P(x) é verdadeiro para todos os x
Exemplo: ∀ nN: n² ≥ n
quantificação existencial existe lógica predicativa
∃ x: P(x) significa: existe pelo menos um x tal que P(x) é verdadeiro
Exemplo: ∃ nN: n + 5 = 2n
=
igualdade igual a todas
x = y significa: x e y são nomes diferentes para a exata mesma coisa
Exemplo: 1 + 2 = 6 − 3
:=
:⇔
definição é definido como todas
x := y significa: x é definido como outro nome para y
P :⇔ Q significa: P é difinido como logicamente equivalente a Q
Exemplo: cosh x := (1/2)(exp x + exp (−x)); A XOR B :⇔ (AB) ∧ ¬(AB)
{ , }
chavetas de conjunto o conjunto de … teoria de conjuntos
{a,b,c} significa: o conjunto que consiste de a, b, e c
Exemplo: N = {0,1,2,…}
{ : }
{ | }
notação de construção de conjuntos o conjunto de … tal que … teoria de conjuntos
{x : P(x)} significa: o conjunto de todos os x, para os quais P(x) é verdadeiro. {x | P(x)} é o mesmo que {x : P(x)}.
Exemplo: {nN : n² < 20} = {0,1,2,3,4}

{}
conjunto vazio conjunto vazio teoria de conjuntos
{} significa: o conjunto sem elementos; ∅ é a mesma coisa
Exemplo: {nN : 1 < n² < 4} = {}

pertença a conjunto em; está em; é um elemento de; é um membro de; pertence a teoria de conjuntos
aS significa: a é um elemento do conjunto S; aS significa: a não é um elemento de S
Exemplo: (1/2)−1N; 2−1N

subconjunto é um subconjunto [próprio] de teoria de conjuntos
Exemplo: AB significa: cada elemento de A é também elemento de B (A é um subconjunto de B)
AB significa: AB mas AB (A é um subconjunto próprio de B)
Exemplo: ABA; QR
união teórica de conjuntos a união de … com …; união teoria de conjuntos
AB significa: o conjunto que contém todos os elementos de A e também todos os de B, mas mais nenhuns
Exemplo: AB ⇔  AB = B
intersecção teórica de conjuntos intersecta com; intersecta teoria de conjuntos
AB significa: o conjunto que contém todos os elementos que A e B têm em comum
Exemplo: {xR : x² = 1} ∩ N = {1}
\
complemento teórico de conjuntos menos; sem teoria de conjuntos
A \ B significa: o conjunto que contém todos os elementos de A que não estão em B
Exemplo: {1,2,3,4} \ {3,4,5,6} = {1,2}
( )
[ ]
{ }
aplicação de função; agrupamento de teoria de conjuntos
para a aplicação de função: f(x) significa: o valor da função f no elemento x
para o agrupamento: execute primeiro as operações dentro dos parênteses
Exemplo: Se f(x) := x², então f(3) = 3² = 9; (8/4)/2 = 2/2 = 1, mas 8/(4/2) = 8/2 = 4
f:XY
seta de função de … para funções
fXY significa: a função f mapeia o conjunto X no conjunto Y
Exemplo: Considere a função fZN definida por f(x) = x²
N
números naturais N números
N significa: {0,1,2,3,…}
Exemplo: {|a| : aZ} = N
Z
números inteiros Z números
Z significa: {…,−3,−2,−1,0,1,2,3,…}
Exemplo: {a : |a| ∈ N} = Z
Q
números racionais] Q números
Q significa: {p/q : p,qZ, q ≠ 0}
3.14 ∈ Q; π ∉ Q
R
números reais R números
R significa: {limn→∞ an : ∀ nN: anQ, o limite existe}
π ∈ R; √(−1) ∉ R
C
números complexos C números
C significa: {a + bi : a,bR}
i = √(−1) ∈ C
<
>
comparação é menor que, é maior que ordenações parciais
x < y significa: x é menor que y; x > y significa: x é maior que y
Exemplo: x < y ⇔  y > x

comparação é menor ou igual a, é maior ou igual a ordenações parciais
xy significa: x é menor que ou igual a y; xy significa: x é maior que ou igual a y
Exemplo: x ≥ 1  ⇒  x² ≥ x
raiz quadrada a raiz quadrada principal de; raiz quadrada números reais
x significa: o número positivo, cujo quadrado é x
Exemplo: √(x²) = |x|
infinito infinito números
∞ é um elemento da linha numérica estendida que é maior que qualquer número real; ocorre com frequência em limites
Exemplo: limx→0 1/|x| = ∞
π
pi pi geometria euclidiana
π significa: a razão entre a circunferência de um círculo e o seu diâmetro
Exemplo: A = πr² é a área de um círculo de raio r
!
factorial factorial análise combinatória
n! é o produto 1×2×…×n
Exemplo: 4! = 24
| |
valor absoluto valor absoluto de; módulo de números
|x| significa: a distância no eixo dos reais (ou no plano complexo) entre x e zero
Exemplo: |”a” + ”bi”| = √(a² + b²)
|| ||
norma norma de; comprimento de análise funcional
||x|| é a norma do elemento x de um espaço vectorial
Exemplo: ||”x”+”y”|| ≤ ||”x”|| + ||”y”||
soma soma em … de … até … de aritmética
k=1n ak significa: a1 + a2 + … + an
Exemplo: ∑k=14 k² = 1² + 2² + 3² + 4² = 1 + 4 + 9 + 16 = 30
produto produto em … de … até … de aritmética
k=1n ak significa: a1a2···an
Exemplo: ∏k=14 (k + 2) = (1  + 2)(2 + 2)(3 + 2)(4 + 2) = 3 × 4 × 5 × 6 = 360
integração integral de … até … de … em função de cálculo
ab f(x) dx significa: a área entre o eixo dos x e o gráfico da função f entre x = a e x = b
0b x² dx = b³/3; ∫x² dx = x³/3
f
derivada derivada de f; primitiva de f cálculo
f ‘(x) é a derivada da função f no ponto x, i.e. o declive da tangente nesse ponto
Exemplo: Se f(x) = x², então f ‘(x) = 2x
gradiente del, nabla, gradiente de cálculo
f (x1, …, xn) é o vector das derivadas parciais (df / dx1, …, df / dxn)
Exemplo: Se f (x,y,z) = 3xy + z² então ∇f = (3y, 3x, 2z)

fonte:  Wikipedia
créditos: Exata