Arquivo da categoria: Origens

Conheça Plimpton 322 – um tablete de argila com escrita cuneiforme babilônica datado em 3800 anos


Plimpton 322 é um tablete de argila parcialmente quebrado medindo cerca de 13 centímetros de largura, 9 centímetros de altura, e 2 centímetros de espessura.

Origem do tablete Plimpton 322

O editor nova-iorquino George A. Plimpton comprou o tablete a partir de um vendedor de arqueologia, Edgar J. Banks, provavelmente em 1922, e o doou com o resto de sua coleção para Columbia University, no meio da década de 1930. De acordo com os Banks, os tabletes vieram de Senkereh, um local ao sul do Iraque correspondente à antiga cidade de Larsa.
Acredita-se que tenha sido escrito por volta de 1800 AEC (antes da era comum), baseado em parte no estilo utilizado na escrita cuneiforme: Robson (2002) afirma que esta forma de escrita “é típica de documentos do sul do Iraque de 4000–3500 anos atrás”. Mais especificamente baseando-se em similaridades de formato com outros tabletes de Larsa que possuem datas explícitas, Plimpton 322 pode ser datado entre o período de 1822–1784 AEC.
 
Foram encontrados aproximadamente meio milhão de tabletes (tabelas) de argila babilônicas escavadas desde o início do Século XIX, sendo que milhares são de natureza matemática. Provavelmente o mais famoso destes exemplos de matemática babilônica seja a tabela Plimpton 322, referindo-se ao fato de ter o número 322 na coleção G.A. Plimpton da Columbia University. Esta tabela, acredita-se ter sido escrita no Século XVIII AEC (antes da era comum), possui uma tabela de 4 colunas e 15 linhas de números em escrita cuneiforme do período. Pesquisadores de Sydney, em 2017, concluíram que as quatro colunas e as 15 fileiras de cuneiformes representam a tabela de trabalho trigonométrico mais antiga e mais precisa do mundo, uma ferramenta de trabalho que poderia ter sido usada na topografia e no cálculo de templos, palácios e pirâmides.
 

Os números

A

B (LARGURA)

C (DIAGONAL)

D

1.59:00:15 = 1.983402777777778

1:59 = 119

2:49 = 169

1

1.56:56:58:14:50:06:15 = 1.949158552088692

56:07 = 3367

1:20:25 = 4825

2

1.55:07:41:15:33:45 = 1.918802126736111

1:16:41 = 4601

1:50:49 = 6649

3

1.53:10:29:32:52:16 = 1.886247906721536

3:31:49 = 12709

5:09:01 = 18541

4

1.48:54:01:40 = 1.815007716049383

1:05 = 65

1:37 = 97

5

1.47:06:41:40 = 1.785192901234568

5:19 = 319

8:01 = 481

6

1.43:11:56:28:26:40 = 1.719983676268861

38:11 = 2291

59:01 = 3541

7

1.41:33:45:14:03:45 = 1.692709418402778

13:19 = 799

20:49 = 1249

8

1.38:33:36:36 = 1.642669444444444

8:01 = 481

12:49 = 769

9

1.35:10:02:28:27:24:26:40 = 1.586122566110349

1:22:41 = 4961

2:16:01 = 8161

10

1.33:45 = 1.5625

45

1:15 = 75

11

1.29:21:54:02:15 = 1.489416840277778

27:59 = 1679

48:49 = 2929

12

1.27:00:03:45 = 1.450017361111111

2:41 = 161

4:49 = 289

13

1.25:48:51:35:06:40 = 1.430238820301783

29:31 = 1771

53:49 = 3229

14

1.23:13:46:40 = 1.38716049382716

28

53

15

O conteúdo principal do Plimpton 322 é uma tabela de números, com quatro colunas e quinze linhas, em notação sexagesimal babilônica. A quarta coluna é apenas uma linha de números em ordem de 1 a 15. Com exceção da quarta coluna, os números das três colunas restantes correspondem aos cálculos trigonométricos de um triângulo retângulo a² + b² = c².
 
Interpretações matemáticas
 
Blogado anteriormente por Anthony Dekker segue tradução abaixo:
 
 
Contendo quatro colunas de números, escritas na base 60 (com um pequeno número de erros, bem como alguns números faltando por danos – estes são corrigidos abaixo). Por exemplo, 1,59: 00: 15 = 1 + 59/60 + 0/3600 + 15/216000 = 1,983402777777778.
 
A coluna B do quadrado (com uma etiqueta no quadrado contendo a palavra “largura”) é um dos lados de um triângulo pitagórico, e a coluna C (com uma etiqueta no quadrado contendo a palavra “diagonal”) é a hipotenusa, tal que C² – B² é sempre um quadrado perfeito (amarelo no diagrama). A coluna A é exatamente igual a C² / (C² – B²), a proporção de azul para amarelo.
 
O que essa tabela representa?
 
Uma boa discussão é de Eleanor Robson [“Palavras e imagens: nova luz sobre Plimpton 322”, American Mathematical Monthly, 109 (2): 105–120]. Robson acredita que Plimpton 322 se encaixa na matemática babilônica padrão e interpreta isso como um esforço do professor para produzir uma lista de problemas de classe.
 
Especificamente, Robson acredita que a tabela foi gerada tomando valores de x (em ordem decrescente de x) de tabelas recíprocas padrão babilônicas, especificamente os valores: 2:24, 2:22:13:20, 2:20:37:30, 2:18:53:20, 2:15, 2:13:20, 2:09:36, 2:08, 2:05, 2:01:30, 2, 1:55:12, 1:52:30, 1:51:06:40, e 1:48, e depois usando o relacionamento: (x − 1 / x)² + 22 = (x + 1 / x)² para gerar triplos pitagóricos. Se nós deixarmos: y = (x − 1 / x) / 2 e z = (x + 1 / x) / 2, então B e C são múltiplos de y e z, e A = z² / (z² − y²).
 
Recentemente, Daniel F. Mansfield e N. J. Wildberger [“Plimpton 322 é trigonometria sexagesimal exata babilônica”, Historia da Matemática, on-line 24 de agosto de 2017] interpretam a tabela como proto-trigonometria. Eu acho a explicação deles da primeira coluna (“uma relação quadrada relacionada que pode ser usada como um índice”) não convincente, no entanto. Por que um índice tão complexo? Robson chama essas interpretações trigonométricas de “conceitualmente anacrônicas” e aponta que não há outra evidência de que os babilônios estejam fazendo trigonometria.
 
Mansfield e Wildberger também sugerem que “os números no P322 são grandes demais para permitir que os estudantes obtenham razoavelmente as raízes quadradas das quantidades necessárias”. No entanto, eu não acho que isso seja verdade. Os babilônios adoravam calcular. Usando o algoritmo de raiz quadrada padrão, até mesmo estimativas iniciais simplistas para as raízes quadradas dos números na coluna A fornecem convergência em 2 ou 3 etapas a cada vez. Por exemplo, para obter a raiz quadrada de 1.59: 00: 15 (1.983402777777778), começo com 1.30: 00: 00 (1.5) como uma suposição. Isso dá 1.24: 40: 05 como a próxima iteração, depois 1.24: 30: 01 e depois 1.24: 30: 00 (1.408333333333333), que é a resposta exata. Dito isso, no entanto, o cálculo dessas raízes quadradas não era realmente necessário para os problemas de classe previstos por Robson.
 
Infelizmente, não acho que Mansfield e Wildberger tenham defendido. Acredito que Robson ainda está correto no significado desse tablete.

Plimpton 322 é trigonometria sexagesimal exata da Babilônia. Fonte: sciencedirect.com

Matemática Babilônica

Matemática Babilônica (também conhecido como Matemática Assírio-Babilônica) se refere a qualquer forma de matemática desenvolvida pelos povos da Mesopotâmia, desde os dias dos antigos Sumérios até a queda da Babilônia em 539 aec.

A difícil tarefa de reentrar na atmosfera da terra – Ônibus Espacial

Space Shuttle (lançador espacial) ou ônibus espacial foi um sofisticado veículo parcialmente reutilizável usado pela NASA como veículo lançador de satélites, nave para suas missões tripuladas de reparos de aparelhos em órbita da terra e reabastecimento da Estação Espacial Internacional. Tornou-se o sucessor da nave Apollo usada durante o Projeto Apollo. O ônibus espacial foi lançado pela primeira vez em 1981 e realizou sua última missão em 2011. Eles foram usados em um total de 135 missões desde 1981 até 2011, todos sendo lançados do Centro Espacial John F. Kennedy, na Flórida. Nas suas missões foram lançados inúmeros satélites, sondas interplanetárias, e o Telescópio espacial Hubble; também realizou experimentos científicos em órbita e participou da construção e manutenção da Estação Espacial Internacional. No tempo total, a frota de ônibus realizou 1322 dias, 19 horas, 21 minutos e 23 segundos de missões espaciais.
Depois de 30 anos de missões no espaço, com 130 missões realizadas com tecnologia de ponta, a frota dos ônibus espaciais da NASA foi aposentada e está em exibição em instituições e museus dos Estados Unidos, segundo a NASA para inspirar a próxima geração de exploradores e engenheiros.
Créditos: Wikipedia Sayrus

 

CONHEÇA ‘NEO’, O ESQUELETO MAIS COMPLETO DO Homo Naledi JÁ ENCONTRADO. (Comentado)

O mais novo achado – recuperado de uma câmara em Rising Star agora chamada Câmara Lesedi. O Homo Naledi é uma nova espécie de hominídeo, anunciada em 2015, que tem características do pré-humano Australopithecus e poderia ser a espécie mais antiga do gênero Homo. Está nos dando uma melhor noção do alcance e importância das descobertas. Temos agora a confirmação oficial de que os restos adicionais de H. Naledi pertencem a pelo menos três indivíduos e, de fato, muitos dos ossos e dentes pertencem a um esqueleto único, notavelmente completo, chamado de Neo. “É um dos maiores achados fósseis do século 21 por direito próprio”, diz Berger…

Como nos tornamos humanos? – Documentário (Nova) – legendado em português

De onde viemos? O que verdadeiramente nos torna humanos? Uma sequência de descobertas antropológicas recentes ilumina essas questões de forma inédita. A lista de reprodução (playlist) contém 3 partes sequenciais.

Episódio 1 – Primeiros Passos

São investigadas situações que nos separaram do tronco dos grandes macacos, a partir de descobertas como “Selam”, o fóssil quase completo de um Australopithecus afarensis.

Veja como o paleoantropólogo etíope Zeray Alemseged, que descobriu o esqueleto da jovem “Selam“, um hominídeo de 3,3 milhões de anos, passou cinco anos escavando no deserto antes de fazer seu famoso achado. Acompanhe as imagens gravadas dessa busca determinada por um fóssil que ampliou poderosamente a compreensão da história humana. Pela primeira vez é possível acompanhar as mudanças de um crânio hominídeo e os estágios que ele passou até chegar às formas atuais. Por que existem saltos na evolução humana? A série explora uma intrigante teoria segundo a qual mudanças climáticas críticas foram essenciais no processo de evolução humana.

Episódio 2 – O Nascimento da Humanidade

Temos contato com o primeiro esqueleto que realmente se parece com o de um homem moderno – “O Menino de Turkana” –, um exemplar do Homo Ergaster perfeitamente conservado.

Episódio 3 – O Último Remanescente

Por que os Neandertais desapareceram à medida que o homem moderno dominou o mundo? Quem foram os misteriosos “Hobbits”, hominídeos com 90 centímetros de altura naturais da ilha de Flores.

Fonte: Blue Dot
Créditos: Nova/PBS

FATOS CONTRA MITOS – NÓS USAMOS APENAS 10% DO NOSSO CÉREBRO E EVOLUÇÃO E APENAS UMA TEORIA

A teoria da evolução é um fato comprovado por experimentos continuamente. Nós utilizamos todo o potencial cerebral. Os fatos permanecem, mas o que consideramos verdades podem mudar, não há nada estático no universo…

20 Anos de Exoplanetas – Space Today TV Nº 97

Há vinte e cinco anos nenhum planeta fora do Sistema Solar (Exoplaneta) tinha sido detectado. Mas, curiosamente, agora sabemos de milhares e temos estudado muitos com detalhes surpreendentes. Observatórios do ESO no Chile têm estado na vanguarda desta expansão enorme no conhecimento. E seus avançados instrumentos continuam a descobrir e estudar a extraordinária diversidade de exoplanetas.

Olhando para o céu à noite, as pessoas ao longo da história se perguntam se há planetas – E, especialmente, os planetas que ostentam vida – além do Sistema Solar. Os astrônomos também têm feito estas perguntas e muitas mais. São planetas comuns? Ou muito raros? Será que eles se assemelham a planetas do Sistema Solar, ou são totalmente diferentes?
Frustrantemente, até muito recentemente, técnicas de observação não foram avançadas o suficiente para serem capazes de responder a qualquer uma destas perguntas. Mas em 1995, isso mudou totalmente.

O primeiro exoplaneta orbitando uma estrela semelhante ao Sol foi detectado. A descoberta monumental foi feita pelos astrônomos baseados em Genebra Michel Mayor e Didier Queloz em torno da estrela 51 Pegasi. O exoplaneta, chamado 51 Pegasi b, tem cerca de metade da massa de Júpiter e viaja em torno da sua estrela-mãe em pouco mais de quatro dias terrestres. Mas isso foi só o começo.

O gotejamento inicial de descobertas tornou-se uma inundação. Milhares de exoplanetas já foram detectados dentro de uma enorme variedade de tamanhos e órbitas. Muitas dessas descobertas têm sido feitas por observatórios do ESO, no Chile. Mas a busca por exoplanetas é um desafio. Esses mundos alienígenas escondem se nas sombras, apresentando pouca ou nenhuma luz própria. Qualquer luz que eles emitam é ofuscada pelo brilho esmagador de sua estrela-mãe.

No entanto, métodos observacionais avançados podem ser usados para detectar esses exoplanetas indescritíveis. A atração gravitacional fraca de um exoplaneta em órbita faz com que a sua estrela-mãe balance para frente e para trás.

Este minúsculo movimento faz com que ocorrá uma pequena mudança no espectro da estrela, a qual espectrógrafos extremamente sensíveis, como o HARPS do ESO possa detectar através de rastreamento da velocidade radial. o HARPS, está instalado no telescópio de 3,6 metros da ESO no Observatório de La Silla, é caçador de exoplanetas mais importante do mundo. É o descobridor de exoplanetas de pouca massa mais bem sucedido até agora. Em 2010, o instrumento já descobriu o mais rico sistema planetário.

O sistema, está localizado a mais de 120 anos-luz de distância em torno da estrela HD 10180 semelhante ao Sol, contém pelo menos cinco exoplanetas. Também há evidência tentadora de que mais dois planetas podem estar presentes neste sistema, um dos quais teria a menor massa jamais encontrado.

Trânsitos planetários também podem ser utilizados pelos astrônomos para detectar indiretamente mundos distantes. Quando um exoplaneta passa em frente da sua estrela-mãe – como visto a partir da Terra – ele bloqueia uma pequena fração da luz da estrela do nosso ponto de vista. Isto cria uma diminuição no brilho da estrela que pode ser medido.

Além de determinar o tamanho de um exoplaneta, trânsitos planetários podem revelar a composição da atmosfera de um exoplaneta. A atmosfera em torno de um exoplaneta super-Terra foi analisada pela primeira vez por astrônomos usando o Very Large Telescope. O planeta, que é conhecido como GJ 1214b, foi estudado quando ele passou na frente de sua estrela-mãe, a luz da estrela passou através da atmosfera do planeta.

Essa luz estelar revelou que a atmosfera do planeta é principalmente água na forma de vapor, ou é denominada por nuvens espessas ou névoas. Observar diretamente um exoplaneta é um feito monumental, mas o primeiro foi feito pela ESO. O Very Large Telescope obteve a primeira imagem de um planeta fora do Sistema Solar. O 2M1207b é cinco vezes mais massivo do que Júpiter. Ele orbita uma estrela fracassada – uma anã marrom – a uma distância 55 vezes maior que a da Terra ao Sol
Telescópios do ESO estão equipados com instrumentos avançados, mas para manter-se na vanguarda da pesquisa de exoplaneta, ESO recentemente encomendou dois novos instrumentos para o VLT. SPHERE é capaz de encontrar e estudar planetas fracos mascarados pelo brilho de suas estrelas hospedeiras.

Ao longo dos últimos 20 anos, o nosso conhecimento de exoplanets tem avançado de forma dramática. Mas a busca por planetas como a Terra e os que abrigam vida continua a ser uma das grandes fronteiras da astronomia. Estamos sozinhos? Nós não sabemos, mas a resposta está quase ao nosso alcance.

Créditos: Sérgio Sacani

BLOG: http://www.spacetoday.com.br

FACEBOOK: http://www.facebook.com/spacetoday

TWITTER: http://twitter.com/spacetoday1

YOUTUBE: http://www.youtube.com/spacetodaytv

Deixar o planeta terra (estrela de nêutrons) – Documentário Natgeo 2015

Caso fosse detectado um objeto astronômico em rota de colisão com a terra do porte de uma estrela de nêutrons, toda a vida no planeta desapareceria no espaço de um ano (incluindo nosso próprio planeta que seria despedaçado), quando da chegada desse objeto. As boas notícias? Caso sua trajetória tornasse possível a chegada em 75 anos, o que podemos fazer nesse espaço de tempo? Quem pode ser salvo? Ao contrário de muitas questões científicas especulativas, esta é uma possibilidade verdadeiramente real e que a nossa espécie (homo sapiens) pode vir a enfrentar num futuro a curto ou médio prazo. Poderia haver uma série de razões pelas quais tivéssemos que deixar o planeta Terra, mas a NASA acredita que a mais provável seria a colisão de um grande asteroide.

Uma estrela de nêutrons tem um pequeno diâmetro da ordem de 20 Km, para os padrões astronômicos é quase nada, mas possuindo uma massa com até 2 vezes a massa do nosso sol, seu campo gravitacional pode aniquilar todo um sistema solar ao transitar no meio.

A tecnologia dos veículos lançadores reutilizáveis (já existentes) tornará viável um empreendimento desse nível no médio e longo prazos.

Fonte: Documentários Premium