Aprenda organizar espaços e subespaços na matemática

Figura 1 – Definimos em P(n) a probabilidade de um evento n ocorrer.

A Probabilidade Condicional determina a probabilidade de um evento A ocorrer na certeza da ocorrência de um evento B, qualquer que seja a ordem dos eventos.

É representado por: P(A/B) = P(A∩B)/P(A) Lê-se: a probabilidade do evento A na certeza do evento B. A cardinalidade do número natural é ℵ0 (lê-se alef-nulo ou alef-zero), o cardinal seguinte maior é ℵ1, depois vem ℵ2 e assim por diante. Continuando desta maneira, é possível definir um número cardinal ℵα para qualquer número ordinal α.

O que é um espaço/subespaço

São as possibilidades existenciais em todos os sentidos que podemos imaginar, conceber e principalmente medir. A existência (universo) nasceu com suas próprias leis da física (inclusos os espaços e subespaços); então, não podemos conceber algo que não esteja incorporado nas leis da física. Fora da ficção, literatura, filosofia, licença poética; tais coisas em si mesmas não podem existir – caso estejam fora de algum espaço ou subespaço. A infraestrutura de nosso universo ou de outros universos é formada por espaços e subespaços em sentido físico e amplo do termo.

Espaço em matemática

O espaço é a extensão tridimensional ilimitada e infinita em que objetos e eventos têm posições e direções relativas. É dentro dos espaços e suas subdivisões (subespaços), onde encontramos todas as possibilidades existenciais no universo físico (leis da física) e no Universo do discurso matemático (UDM).

O que são conjuntos?

Podemos defini-los como: a organização dos espaços e subespaços matemáticos. Para que possamos aprender matemática em profundidade é necessário aprendermos a linguagem moderna dos conjuntos. Por uma questão de notações e convenções seguidas por quase todos os matemáticos e este autor, usaremos letras MAIÚSCULAS para representar conjuntos e letras minúsculas para representar os elementos de um conjunto. Os elementos de qualquer conjunto são colocados entre chaves, ou seja, “{” e “}”. Além disso, se um objeto x pertence a um conjunto X, o representamos como x X. Da mesma forma, se um elemento não pertence ao conjunto, escrevemos x ∉ X. Importante: tanto as notações quanto toda a simbologia matemática, ocupam locais que chamamos de espaços, ao local dentro de outro local podemos nomear como subespaços.

O que são elementos?

Um conjunto é uma coleção de objetos chamados elementos ou membros. Um conjunto sem objetos é chamado conjunto vazio e é denotado por 0 (zero, ou às vezes por {} abre e fecha chaves sem conteúdo).

Ex: S:= {0,1,2,3}

Com os símbolos:= (dois pontos e igual), queremos dizer que estamos definindo o que é S, ao invés de apenas mostrar uma igualdade. Nós escrevemos:

1 ∈ S

para denotar que o número 1 pertence ao conjunto S, ou seja, 1 é um membro de S. Às vezes queremos dizer que dois elementos estão em um conjunto S, então escrevemos “1, 2 ∈ S” como uma abreviação para “1 ∈ S e 2 ∈ S”. Da mesma forma, escrevemos:

5 ∉ S

para denotar que o número 5 não está em S, ou seja, 5 não é membro de S.

Os elementos de todos os conjuntos em consideração vêm de algum conjunto que chamamos universo. Para simplificar, muitas vezes consideramos o universo como o conjunto que contém apenas os elementos nos quais estamos interessados. O universo é geralmente entendido a partir do contexto e não é mencionado explicitamente. Neste contexto, nosso universo será na maioria das vezes o conjunto de números reais. Enquanto os elementos de um conjunto geralmente são números – outros objetos; como outros conjuntos, podem ser elementos de um conjunto. Um conjunto também pode conter alguns dos mesmos elementos que outro conjunto.

Por exemplo:

T:= {0, 2}

contém os números 0 e 2. Neste caso, todos os elementos de T também pertencem a S. Escrevemos T ⊂ S. Observe:

Figura 2. Um diagrama dos conjuntos do exemplo S e seu subconjunto T. Observe que estamos organizando o espaço de S com seu subespaço interior T.

Aprenda ler matemática

Talvez a maior gafe encontrada no ensino da matemática é quando os alunos não sabem ler as equações e os objetos matemáticos. Ao observar um símbolo, uma fórmula ou equação, você não pode ficar com a dúvida cruel sobre a simbologia empregada, o contexto e principalmente a verbalização da frase na explicação de cada elemento apresentado. Ao olhar para a matemática: você não pode guardar a dúvida – resolva a dúvida de imediato (pergunte ao professor ou pesquise na internet em locais confiáveis com fontes de referência – como neste blog) – jamais fique na dúvida sobre: pontos, linhas, gráficos, letras, símbolos, equações, etc.

Realidade (física) e matemática (subjetiva)

O universo (realidade ou natureza) é 100% físico, não há existências fora das leis da física (isso inclui a mecânica quântica e teoria da relatividade); portanto, não há matemática escondida na natureza, você não deve procurar matemática na natureza, se fizer isso cometerá o tão falado: viés de confirmação, parte do viés cognitivo. Toda a matemática é 100% subjetiva e como tal é apenas um produto de nosso cérebro que usa nossos sentidos (simulação cerebral) – estão inclusos -, nossos pensamentos para que possamos intuir a matemática. É por esse motivo que nós não podemos ter acesso direto à realidade física sem antes passarmos pela simulação de nosso cérebro – nossos corpos -, funcionam como se fossem sensores ou antenas, por meio dos quais nosso cérebro simula o mundo ao nosso redor. Ex: uma teia de aranha, uma folha, o padrão das conchas, favos de mel, etc. Essas coisas são apenas representações da realidade, geradas por nosso cérebro. Inclusive a dupla hélice de nosso DNA, é apenas uma construção matemática que nós atribuímos pela forma como nosso cérebro consegue interpretar a realidade física por meio de uma simulação interna. Fique atento: somente depois que a matemática foi transformada em experimentos confrontados com o mundo físico (leis da física), é que a realidade toma forma e alcançamos a verdade dos fatos. Enquanto a matemática for apenas um apanhado de fórmulas e símbolos em nossas cabeças, o lá fora estará sempre vazio ∅, cuja existência é uma nebulosidade indefinida.

Teorema, proposição, lema e corolário

Teorema

Em matemática, um teorema é uma afirmação que tem sido provada, ou pode ser provada. A prova de um teorema é um argumento lógico que usa as regras de inferência de um sistema dedutivo para estabelecer que o teorema é uma consequência lógica dos axiomas e teoremas previamente provados.

Terminologia

Há vários termos diferentes para afirmações matemáticas, esses termos indicam o papel que as declarações desempenham em um determinado assunto. A distinção entre termos diferentes às vezes é bastante arbitrária, e o uso de alguns termos evoluiu ao longo do tempo.

  • Um axioma ou postulado, é um pressuposto fundamental em relação ao objeto estudado, que é aceito sem comprovação. Um conceito relacionado é o de uma definição, que dá o significado de uma palavra ou frase em termos de conceitos conhecidos. A geometria clássica discerne entre axiomas, que são afirmações gerais e postulados, que são afirmações sobre objetos geométricos. Historicamente, os axiomas eram considerados “evidentes”, hoje eles são meramente considerados verdadeiros.
  • Uma conjectura é uma afirmação não comprovada que se acredita ser verdadeira. Conjecturas são normalmente apresentadas em público, e nomeadas após seu criador (por exemplo, a conjectura de Goldbach e Collatz conjectura). O termo hipótese também é usado neste sentido (por exemplo, hipótese de Riemann), que não deve ser confundido com “hipótese” como premissa de uma prova. Outros termos também são usados ​​ocasionalmente; por exemplo, problema quando as pessoas não têm certeza se a afirmação deve ser considerada verdadeira. O Último Teorema de Fermat foi historicamente chamado de teorema; embora, por séculos, tenha sido apenas uma conjectura.
  • Um teorema é uma afirmação que foi comprovada como verdadeira com base em axiomas e outros teoremas.
  • Uma proposição é um teorema de menor importância, ou considerado tão elementar ou imediatamente óbvio, que pode ser declarado sem provas. Isso não deve ser confundido com “proposição” conforme usada na lógica proposicional. Em geometria clássica o termo “proposição” foi usado de maneira diferente: em Os Elementos de Euclides (300 AEC), todos os teoremas e construções geométricas foram chamados de “proposições”, independentemente da sua importância.
  • Um lema é uma “proposição acessória” – uma proposição com pouca aplicabilidade fora de seu uso em uma prova particular. Ao longo do tempo um lema pode ganhar em importância e ser considerado um teorema, embora o termo “lema” geralmente é mantido como parte de seu nome (por exemplo, o lema de Gauss, o lema de Zorn, e os lemas fundamentais).
  • Um corolário é uma proposição que segue imediatamente de outro teorema ou axioma, com pouca ou nenhuma prova exigida. Um corolário também pode ser uma reafirmação de um teorema em uma forma mais simples, ou para um caso especial: por exemplo, o teorema “todos os ângulos internos em um retângulo são ângulos retos” tem um corolário que “todos os ângulos internos em um quadrado são ângulos retos” – um quadrado sendo um caso especial de um retângulo.
  • A generalização de um teorema é um teorema com uma afirmação semelhante, mas em um escopo mais amplo, a partir do qual o teorema original pode ser deduzido como um caso especial (um corolário).

Resumo

Aos resultados acima chamamos de Teorema, enquanto a maioria dos resultados chamamos de Proposições, e para alguns chamamos de Lema (um resultado que leva a outro resultado) ou Corolário (uma consequência rápida do resultado anterior). Não se concentre muito na nomenclatura. Algumas são tradicionais, outras são escolhas estilísticas. Não é necessariamente verdade que um Teorema é sempre “mais importante” que uma Proposição ou um Lema. Também precisaremos cruzar ou unir vários conjuntos de uma só vez. Se houver apenas um número finito, então simplesmente aplicamos a operação de união ou interseção várias vezes.

Sugestões importantes

Há várias estratégias diferentes para provar proposições. Além de usar diferentes métodos de prova, os alunos geralmente cometem alguns erros comuns quando estão aprendendo a provar teoremas. Para auxiliar os alunos que estudam matemática abstrata pela primeira vez, listo aqui algumas das dificuldades encontradas e algumas das estratégias de prova disponíveis.

  • Um teorema não pode ser provado por exemplo; no entanto, a maneira padrão de mostrar que uma afirmação não é um teorema é fornecer um contraexemplo.
  • Os quantificadores são importantes. Palavras e frases como: somente, para todo, para todos e para alguns, possuem significados diferentes.
  • Nunca assuma nenhuma hipótese que não esteja explicitamente declarada no teorema. Você não pode tomar as coisas como garantidas.
  • A matemática é desprovida de realidade (a física é o mundo natural ou real, a matemática será sempre subjetiva – nossa ferramenta mais importante).
  • Suponha que você queira mostrar que um objeto existe e é único. Primeiro, mostre que realmente existe tal objeto. Para mostrar que é único, suponha que existam dois desses objetos, digamos x e y, e então mostre que x = y.
  • Às vezes é mais fácil provar a contra positiva de uma afirmação. Provar a afirmação “Se p, então q” é exatamente o mesmo que provar a afirmação “Se não q, então não p”.
  • Embora, geralmente seja melhor encontrar uma prova direta de um teorema, essa tarefa às vezes pode ser difícil. Pode ser mais fácil supor que o teorema que você está tentando provar é falso e esperar que no decorrer do seu argumento você seja forçado a fazer alguma afirmação que não pode ser verdadeira.

Universo do discurso matemático (UDM)

Acima falamos do universo real das leis da física que é independente de nossos conceitos ou suposições, quando falamos de matemática podemos utilizar o que chamo de “universo do discurso matemático UDM” para representar todo o repertório de objetos ou elementos que fazem uso da lógica subjetiva inventada por nós e espelhada em nossa simulação construída por nosso cérebro (abstrações/intuições).

Ex1: construtor de conjuntos

C = {x ∈ R|0 ≤ x ≤ 1}

Lê-se: C é igual ao espaço x que pertence a R (conjunto dos reais) tal que 0 é menor ou igual ao espaço x que é menor ou igual 1.

Ou, também podemos ler como: “C é uma coleção de todos os elementos x de R tais que 0 é menor ou igual a x e x é menor ou igual a 1”.

Considere a coleção C, que faremos do nosso universo R de números reais da forma maior ou igual a 0 e menor ou igual a 1. Vejamos se podemos listar os elementos como acima. Claramente, 0 é um número real que segue nosso critério para estar na coleção e 1 também. Existe algum outro número real entre 0 e 1 que também satisfaça o critério? Sim! Um desses números é 1/2 (particionamento de espaços).

Considerando a maneira de escrever conjuntos tratadas no exemplo 1 acima, faremos os seguintes conjuntos do conjunto dos números reais R:

(conjunto vazio) – existencial e sem elementos.

N = {1, 2, 3, ···} ,

Z = {…, −3, −2, −1, 0, 1, 2, 3,…},

Q = {p/q ∈ R|p ∈ Z e q ∈ N},

Q+ = {x ∈ Q|x > 0},

Q = {x ∈ Q|x < 0},

Q = {x ∈ Q|x ≠ 0},

R+ = {x ∈ R|x > 0},

R = {x ∈ R|x < 0},

R = {x ∈ R|x ≠ 0}.

Neste exemplo, usamos essas notações para os conjuntos definidos acima. Aqui, o conjunto N é chamado de conjunto dos números naturais, Z é chamado de conjunto dos inteiros e Q é chamado de conjunto dos números racionais. Um conjunto que ainda não escrevemos e ao qual não damos uma notação é o conjunto dos números irracionais. Será tratado em outro poste o motivo é a falta de espaços aqui.

Vimos até agora que podemos formar conjuntos que contêm números. Uma pergunta natural surge: existem conjuntos que contêm elementos que não são apenas números? Bem, como podemos ter visto em nosso ensino médio, os conjuntos podem conter quaisquer tipos de elementos: números, alfabetos, palavras ou; na verdade, um conjunto de livros ou papeis também é um conjunto! Nesta fase, porém, uma pergunta melhor pode ser feita: os elementos de um conjunto podem ser conjuntos? Vamos tentar descobrir por meio de exemplos:

Famílias de conjuntos

Considere o conjunto dos números reais, R. Desejamos coletar todos os conjuntos construídos a partir dos elementos de R que contêm 0. Agora, estamos coletando conjuntos em vez de elementos individuais de R. Podemos ter um desses conjuntos? Sim, o próprio R. Podemos ter outro? Novamente a resposta é sim! {0} é outro conjunto desse tipo. Claramente, listar todos esses conjuntos seria impraticável. Então, usaremos uma função construtora de conjuntos para escrever nossa coleção que chamaremos de F. Então temos:

F = {S|S é construído a partir dos elementos de R e 0 ∈ S}

Lê-se: F é uma função igual ao conjunto S, tal que S é construído a partir dos elementos de R e 0 ∈ pertence a S.

Os elementos de conjuntos podem ser os próprios conjuntos. Sempre que tal coisa acontece, ou seja, temos uma coleção de conjuntos, devemos usar letras (como o F que usamos acima) para escrevê-las. Antes de prosseguir, vamos tentar obter uma coleção de conjuntos, onde os conjuntos serão construídos a partir de N.

Ex2: indexação de conjuntos

Consideremos, como nosso universo, o conjunto dos números naturais N e para cada número natural n ∈ N, tentamos coletar conjuntos (construídos a partir de N) que tenham todos os elementos de 1 a n. Isso significa dizer que coletamos conjuntos Sn para cada n. Aqui, se tentarmos dar diferentes símbolos (letras) a cada um desses conjuntos, ficaremos sem símbolos! Assim, tentamos “indexar” esses conjuntos. Ou seja, escrevemos Sn = {1, 2, ···, n}, onde se entende que à medida que n muda, os elementos do conjunto Sn também mudam. Portanto, S1 = {1}, S2 = {1, 2}, S3 = {1, 2, 3} e assim por diante. Assim, escrevemos nossa família de conjuntos como:

F = {Sn|n ∈ N}

Lê-se: a função ou família F é igual ao conjunto Sn tal que n pertence ∈ a N.

Aqui, dizemos que F é uma família de conjuntos indexada por N; o conjunto dos números naturais N é chamado de conjunto de índices e n é chamado de índice.

Conjuntos nem sempre são indexados por números naturais. Também podemos indexar conjuntos por outros conjuntos, como: inteiros, números racionais, números reais, ou mesmo por um conjunto que não é necessariamente um conjunto de números. Na maioria das vezes, consideraremos um conjunto de índice arbitrário, que denotamos por Λ (Letra grega Lambda Maiúscula ou λ minúscula, ao longo do texto), cujos elementos não são exatamente conhecidos por nós. Usaremos letras gregas maiúsculas para denotar conjuntos de índices arbitrários e as letras gregas pequenas (correspondentes) para denotar os elementos do conjunto de índices. Portanto, em geral, uma família indexada de conjuntos será escrita como:

F = {Aλ|λ ∈ Λ}

Antes de prosseguir, vamos tentar ver um tipo especial de coleção. Suponha que nosso universo seja o conjunto de todos os humanos que vivem na Terra. Suponha que uma pessoa como nós deseja coletar todos aqueles humanos que têm 5 mãos, 6 pernas e 4 caudas. Existe algum ser humano vivo na terra com essas configurações? A resposta é não! Então, nossa coleção não tem nenhum elemento. Um conjunto sem elementos é chamado de conjunto vazio e é denotado por . Uma pessoa com boa experiência em lógica pode fazer uma pergunta neste ponto: em todos os lugares foi escrito um (conjunto vazio). O uso de “um” é justificado? Em outras palavras, o conjunto vazio é único? Abordaremos essa questão mais tarde, depois de termos visto o suficiente sobre operações e igualdades de conjuntos.

Operações em conjuntos

Assim que tivermos os conjuntos, podemos começar a brincar com eles. A primeira coisa que podemos fazer neste momento é comparar dois conjuntos. Em primeiro lugar, abordaremos a questão: quando podemos dizer que dois conjuntos são iguais? No início, definimos nossos conjuntos como coleções. Primeiramente notamos que durante a coleta, não damos importância à ordem em que são coletados. Como resultado, os conjuntos {1, 2} e {2, 1} são os mesmos. O que observamos? Dados dois conjuntos X e Y, quando podemos dizer que eles são iguais? Uma resposta baseada em completa intuição e observação é: Sempre que todo elemento de X é um elemento de Y e todo elemento de Y é um elemento de X. A definição formal (matemática) de igualdade será dada um pouco mais tarde.

A próxima tarefa que podemos fazer é observar os conjuntos que definimos na seção acima. Se olharmos com atenção, todo número natural também é um número inteiro (positivo). Esses dois conjuntos são iguais? Intuitivamente, a resposta a esta pergunta é: Não! 0 é um desses elementos em Z (inteiros) que não é um número N (natural). No entanto, o conjunto dos números inteiros têm todos os elementos do conjunto dos números naturais. Neste caso, chamamos o conjunto dos números naturais de subconjunto do conjunto dos inteiros.

Agora estamos prontos para as definições formais de subconjunto e igualdade.

Obs: o número “0” Zero, foi inventado há mais ou menos 2600 anos, é por isso que não é considerado um número natural, muito cuidado para não fazer confusão entre Z (inteiros com 0) e N (naturais sem 0).

Subconjuntos

Um conjunto X é um subconjunto de um conjunto Y se ∀x ∈ X, x ∈ Y. Isto é denotado por X ⊆ Y.

Essa expressão é lida como: um conjunto X é um subconjunto de um conjunto Y se ∀x ∈ X, x ∈ Y (para todo x que pertence a X, x pertence a Y), significa que X ⊆ Y (X está contido ou é igual a Y).

Nota1: Se o conjunto Y tem pelo menos um elemento que não está em X, então X é chamado de subconjunto próprio de Y. Isso é denotado por X ⊂ Y ao longo da explicação.

Nota2: se X é um subconjunto de Y, então Y é chamado de superconjunto de X.

Igualdade de conjuntos

Dois conjuntos X e Y são iguais se ∀x ∈ X, x ∈ Y e ∀y ∈ Y, y ∈ X. Isso é equivalente a X ⊆ Y e Y ⊆ X. A igualdade é denotada por X = Y.

Agora, tentamos construir mais conjuntos novos dos conjuntos que já temos. Dados quaisquer dois conjuntos X e Y, uma maneira de fazer um novo conjunto é coletar todos os elementos de X e todos os elementos de Y em uma única coleção, digamos Z. Assim, qualquer elemento de Z é de X ou de Y (ou mesmo ambos, se tiverem elementos em comum). Um conjunto formado dessa maneira é chamado de união de X e Y. Outra maneira de fazer um novo conjunto é coletar os elementos que estão em X e Y e colocá-los em uma única coleção, digamos U. Essa coleção é chamada de interseção de X e Y. Passamos agora para a definição formal de união e interseção.

Definições gerais

Um conjunto A é um subconjunto de um conjunto B se x ∈ A implicar x ∈ B, e escrevemos A ⊂ B. Ou seja, todos os membros de A também são membros de B. Às vezes escrevemos B ⊃ A que significar a mesma coisa.

Dois conjuntos A e B são iguais se A ⊂ B e B ⊂ A. Escrevemos A = B. Ou seja, A e B contêm exatamente os mesmos elementos. Se não for verdade que A e B são iguais, então escrevemos A ≠ B.

Um conjunto A é um subconjunto próprio de B se A ⊂ B e A ≠ B. Escrevemos A ⊊ B Lê-se: A está contido, mas não é igual a B.

Para o exemplo da Figura 2 acimaS e T -, T ⊂ S, mas T ≠ S. Então T é um subconjunto próprio de S (T ⊊ S, ilustrando o fato de que T é subconjunto de S ou, equivalentemente, que S é um superconjunto de T). Se A = B, então A e B são simplesmente dois nomes para o mesmo conjunto.

Uso de espaços construtores de conjuntos

Para definir conjuntos, muitas vezes usa-se a notação do “espaço” construtor de conjuntos:

{x ∈ A : P(x)}

Lê-se: x pertence a A, tal que, P(x) é verdadeiro, dentro do espaço que começa com {abre e fecha chaves}.

Esta notação refere-se a um subconjunto do conjunto A contendo todos os elementos de A que satisfazem a propriedade P(x). Usando S = {0, 1, 2} como acima, {x ∈ S:x ≠ 2} é o conjunto {0, 1}. A notação é às vezes abreviada como {x:P(x)}, ou seja, A não é mencionado quando entendido a partir do contexto. Além disso, x ∈ A às vezes é substituído por uma fórmula para facilitar a leitura da notação.

Exemplos de notações comuns para conjuntos

  • O conjunto dos números naturais, N:= {1, 2, 3, . . .}.
  • O conjunto de inteiros, Z:= {0, −1, 1, −2, 2, . . .}.
  • O conjunto dos números racionais, Q:= {m/n:m, n ∈ Z e n ≠ 0}.
  • O conjunto dos números naturais pares, {2m:m ∈ N}.
  • O conjunto dos números reais, R.
Figura 3. Observe que NZQR C (os Naturais N estão contidos nos Inteiros Z, contidos nos racionais Q, contido nos reais R, contidos nos C complexos).

Obs: montamos nossos conjuntos a partir da organização de conjuntos anteriores previamente estabelecidos.

União e interseção de conjuntos

União

Significa a associação ou combinação de vários elementos, semelhantes ou diferentes, com o intuito de formar um conjunto. Junção, ligação e conexão são alguns dos sinônimos da palavra união, e que nos ajudam a entender o significado amplo deste termo.

A união de dois conjuntos A e B é definida como:

A ∪ B:= {x:x ∈ A ou x ∈ B}

Lê-se: a união do conjunto A com o conjunto B, é igual ao espaço x tal que x pertente a A ou x pertence a B).

Interseção

Significa a operação sobre dois ou mais conjuntos de que resulta um conjunto com todos os elementos que são comuns.

A interseção de dois conjuntos A e B é definida como:

A ∩ B:= {x:x ∈ A e x ∈ B}

Lê-se: a interseção do conjunto A com o conjunto B, é igual ao espaço x tal que x pertente a A e x pertence a B).

Complementar

Que completa ou complementa. Acrescentar, adicionar o elemento que falta a alguma coisa. Receber o que completa ou conclui alguma coisa: completar um trabalho.

Um complemento de B em relação a A (ou diferença teórica de conjuntos de A e B) é definido como:

A\B:= {x:x ∈ A e x ∉ B}

Lê-se: o complementar de B em relação a A é igual ao espaço x tal que x pertence a A e x não pertence a B.

Dizemos complemento de B e escrevemos Bc em vez de A\B se o conjunto A é o universo inteiro ou se é o conjunto óbvio que contém B, e é entendido a partir do contexto.

B\A:= {x:x ∈ B e x ∉ A}

Lê-se: o complementar de A em relação a B é igual ao espaço x tal que x pertence a B e x não pertence a A.

Dizemos complemento de A e escrevemos Ac (quando aparece de forma isolada) em vez de B\A se o conjunto B é o universo inteiro ou se é o conjunto óbvio que contém A, e é entendido a partir do contexto.

Conjuntos disjuntos

Dois conjuntos são ditos disjuntos se não tiverem nenhum elemento em comum. Em outras palavras, dois conjuntos são disjuntos se sua interseção for o conjunto vazio .

Dizemos que os conjuntos A e B são disjuntos se A ∩ B = ∅.

Obs: a notação Bc (idem para Ac) pode ser um pouco vaga neste ponto. Se o conjunto B é um subconjunto dos números reais R, então Bc significa R\B. Se B é naturalmente um subconjunto dos números naturais, então Bc é N\B. Se uma ambiguidade pode surgir, usamos a notação de diferença de conjunto A\B (lê-se: A menos B).

Ex3:

Figura 4. Diagramas de Venn com operações de conjuntos, o resultado da operação é sombreado.

Operações com conjuntos

Ilustramos as operações nos diagramas de Venn na Figura 4. Vamos agora estabelecer um dos teoremas básicos sobre conjuntos e lógica.

Lei de Morgan. Sejam os conjuntos A, B, C. Então:

(B C)c = Bc Cc,

(B ∩ C)c = Bc ∪ Cc.

Ou, simplificando:

A \ (B C) = (A \ B) (A \ C),

A \ (B ∩ C) = (A \ B) ∪ (A \ C).

Prova. A primeira afirmação é provada pela segunda afirmação se assumirmos que o conjunto A é nosso “universo”. Vamos provar A \ (B ∪ C) = (A \ B) ∩ (A \ C). Lembre-se da definição de igualdade de conjuntos. Primeiro, devemos mostrar que se x ∈ A \ (B ∪ C), então x ∈ (A \ B) ∩ (A \ C). Em segundo lugar, devemos também mostrar que se x ∈ (A \ B) ∩ (A \ C), então x ∈ A \ (B ∪ C). Então, vamos supor que x ∈ A \ (B ∪ C). Então x está em A, mas não em B nem em C. Portanto, x está em A e não em B, ou seja, x ∈ A \ B. Da mesma forma x ∈ A \ C. Assim x ∈ (A \ B) ∩ (A \ C). Por outro lado, suponha que x ∈ (A \ B) ∩ (A \ C). Em particular, x ∈ (A \ B), então x ∈ A e x ∉ B. Também como x ∈ (A \ C), então x ∉ C. Daí x ∈ A \ (B ∪ C).

No entanto, suponha que temos uma coleção infinita de conjuntos (um conjunto de conjuntos) {A1, A2, A3, . . .}. Nós definimos:

\bigcup_{n=1}^{\infty} A_{n}:=\left\{x: x \in A_{n} \ para \ alguns \ n \in \mathbb{N}\right\}

Esta expressão é lida como: a união que começa em n = 1 e vai até ao infinito do conjunto An, é igual ao espaço x, tal que x ∈ pertence à An, para alguns n que pertencem ao conjunto N.

\bigcap_{n=1}^{\infty} A_{n}:=\left\{x: x \in A_{n} \ para \ todos \ n \in \mathbb{N}\right\}

Esta expressão é lida como: a interseção que começa em n = 1 e vai até ao infinito do conjunto An, é igual ao espaço x, tal que x ∈ pertence à An, para todos os n que pertencem ao conjunto N.

Também podemos ter conjuntos indexados por dois números naturais. Por exemplo, podemos ter o conjunto de conjuntos {A1,1, A1,2, A2,1, A1,3, A2,2, A3,1, . . .}. Então escrevemos:

\bigcup_{n=1}^{\infty} \bigcup_{m=1}^{\infty} A_{n, m}=\bigcup_{n=1}^{\infty}\left(\bigcup_{m=1}^{\infty} A_{n, m}\right)

E da mesma forma com os cruzamentos. Não é difícil ver que podemos tomar a união em qualquer ordem. No entanto, mudando a ordem de uniões e cruzamentos geralmente não é permitido sem prova. Por exemplo:

\bigcup_{n=1}^{\infty} \bigcap_{m=1}^{\infty}{k \in N : m k<n}=\bigcup^{\infty} \emptyset=\emptyset

No entanto,

\bigcap_{m=1}^{\infty} \bigcup_{n=1}^{\infty}{k \in N : m k<n}=\bigcap_{m=1}^{\infty} N = N

Às vezes, o conjunto de índices não são os números naturais. Nesse caso, exigimos uma descrição mais geral da notação. Suponha que λ seja algum conjunto e para cada λ ∈ I, existe um conjunto . Então definimos:

\bigcup_{\lambda \in I} A_{\lambda}:=\left\{x: x \in A_{\lambda} \text { para alguns } \lambda \in I\right\}, \bigcap_{\lambda \in I} A_{\lambda}:=\left\{x: x \in A_{\lambda} \text { para todos } \lambda \in I\right\}

União e interseção arbitrárias

Dos conjuntos construídos a partir de R, para cada par, dado uma união e uma interseção. O que podemos observar?

As definições de união e interseção são feitas apenas para dois conjuntos. Mas, gostaríamos de fazer uma definição geral para uma coleção arbitrária de conjuntos cuja união e interseção precisamos encontrar. Simplesmente estendendo as definições (cuja origem é nossa intuição), obtemos as seguintes definições para uniões e interseções de famílias arbitrárias de conjuntos.

União arbitrária

Dado uma família arbitrária de conjuntos indexados F = {Aλ|λ ∈ Λ} a união desta família é a coleção de elementos que estão em pelo menos um dos conjuntos da família. Nós a escrevemos como:

\bigcup_{\lambda \in \Lambda} A_{\lambda}=\left\{x \mid \exists \lambda_{0} \in \Lambda \text { tal que } x \in A_{\lambda_{0}}\right\}

Interseção arbitrária

Dada uma família arbitrária de conjuntos indexados: F = {Aλ|λ ∈ Λ} a interseção desta família é a coleção de elementos que estão em todos os conjuntos da família. Nós o escrevemos como:

\bigcap_{\lambda \in \Lambda} A_{\lambda}=\left\{x \mid \forall \lambda \in \Lambda, x \in A_{\lambda}\right\}

Como observado no Ex:02 acima, podemos ver que a interseção de alguns conjuntos pode ser o conjunto vazio, ou seja, pode haver conjuntos X e Y tais que X ∩ Y = ∅. Tais conjuntos são chamados disjuntos. Em particular, o leitor deve ter observado que Q+ e Q são disjuntos. Se tomarmos a união de tais conjuntos (cuja interseção é vazia), a união é chamada de união disjunta. Como observação imediata, podemos concluir que Q é a união disjunta de Q+ e Q. Da mesma forma, se F = {Aλ|λ ∈ Λ} é uma família indexada arbitrária, então F é uma família disjunta se:

\bigcap_{\lambda \in \Lambda} A_{\lambda}=\emptyset

Aqui, podemos ter outro conceito, muitas vezes chamado de disjunção de pares. Diz-se que a família F é disjunta aos pares se:

∀λ1, λ2 ∈ Λ com λ1 ≠ λ2, temos Aλ1 ∩ Aλ2 = ∅

Complementares estendidos (complemento relativo ou diferença)

Outra maneira de obter novos conjuntos dos antigos é coletar todos os elementos que não estão no conjunto fornecido. Chamamos essa coleção de complemento do conjunto dado. Dado um conjunto A, seu complemento é a coleção de elementos que não estão em A. Nós o escrevemos como:

A^{c}={x \mid x \notin A}

Aqui, devemos notar que não conhecemos nada “fora” do nosso universo do discurso (UDM). Portanto, para definir um complemento, precisamos de um conjunto universal. Nós o chamamos, por enquanto, de U. Como não sabemos o que está fora de U; claramente, Uc = ∅ e também, c = U, já que nenhum dos elementos de U está em . Assim, uma melhor maneira de escrever complementos é:

Ac = {x ∈ U|x ∉ A}

Lê-se: o conjunto complementar de A é igual ao espaço x que pertence ao conjunto U, tal que x não pertence ao conjunto A.

Além de receber complementos, uma maneira de obter novos conjuntos de dois conjuntos A e B é coletando os elementos que estão apenas em um dos conjuntos e não em outro. Chamamos isso de complemento relativo ou diferença de conjuntos.

Diferenças entre problemas na física e problemas matemáticos

Figura 5. Problemas da física x problemas da matemática.

No diagrama da figura 5, podemos observar a diferença de um problema físico que tem 100% de realidade, comparado a um problema matemática que tem 100% de abstração. Resolver um problema do mundo físico diretamente é difícil, então precisamos fazer a abstração (intuir o problema) e realizar a simulação com possibilidades infinitas dentro do escopo {espaços} da matemática. Quando atingimos o nível da demonstração (todas as equações resolvidas), podemos partir para o campo da física e colocar em prática a nossa solução. Somente após os testes na prática é que teremos a comprovação (experiência) de que a solução física foi encontrada. {RC}.

O matemático está envolvido num jogo do qual ele mesmo escreve as regras, enquanto o físico joga com as regras fornecidas pela natureza.

Paul Adrien Maurice Dirac.

Sugestões de leituras

Amalie Emmy Noether (Erlangen, 23 de março de 1882 – Bryn Mawr, 14 de abril de 1935) foi uma matemática alemã, conhecida pelas suas contribuições de fundamental importância aos campos da física teórica e álgebra abstrata. Considerada por David Hilbert, Albert Einstein, Hermann Weyl e outros como a mulher mais importante na história da matemática. Ela revolucionou as teorias sobre anéis, corpos e álgebra. Em física, o teorema de Noether explica a conexão fundamental entre a simetria na física e as leis de conservação.

Clique na capa do livro ao lado e comece a leitura.

Terence Tao. Em fevereiro de 2007, converti minha página de atualizações de pesquisa “O que há de novo” em um blog em terrytao.wordpress.com. Desde então, este blog cresceu e evoluiu para cobrir uma ampla variedade de tópicos matemáticos, desde minhas próprias atualizações de pesquisa até palestras e postagens de outros matemáticos, problemas abertos, anotações de aula, artigos expositivos em níveis básicos e avançados. Boa Leitura!

Clique na capa do livro ao lado e acesse via link direto.

Lembre-se: a matemática é a ciência embarcada em todas as atividades humanas, desde o surgimento da escrita, nas tecnologias aeroespaciais, computadores analógicos, digitais, quânticos e principalmente nas criptomoedas que em breve substituirão toda a reserva de valor na economia mundial, sendo a mais importante cripto, Bitcoin. {RC}.

Referências bibliográficas

Em que devemos acreditar? A resposta correta é: no grau de probabilidade dos existenciais!

Vivemos na era da máxima aquisição de conhecimentos. Créditos imagem: pngwing.

Qual a confiabilidade da informação distribuída hoje na internet?

Quando você tem contato com determinada informação, seja na forma de conteúdos que aparecem nas redes sociais: Blogs (este aqui por exemplo) Twitter, WhatsApp, Facebook, canais do Youtube, Wikipedia, etc. A medida da probabilidade da informação embarcada nesses meios digitais, estar correta, é de apenas 50%.

Análise do espaço amostral

Para analisar esses espaços vamos utilizar a distribuição de Bernoulli, uma distribuição discreta de espaço amostral {0, 1}, que tem valor 1 com a probabilidade de sucesso p e valor 0 com a probabilidade de falha q = 1 − p. Uma moeda pode dar “coroa” com probabilidade p e “cara” com probabilidade 1 − p. A experiência é dita justa se p = 0.5, indicando a origem dessa terminologia em jogos de apostas (a aposta é justa se ambos os possíveis resultados têm a mesma probabilidade).

Qual a orientação segura para tomar como verdade algo divulgado nas redes sociais?

  • Não acredite às cegas no que você leu, considere tudo como 50% verdadeiro. Obs: metáfora das pílulas: Pílula Azul = Senso Comum – Pílula Vermelha = PCE (Produto de Crenças em Existentes).
  • Busque as fontes da postagem, mensagem, conteúdo, fotos, vídeos, etc.
  • Faça uma comparação do conteúdo com suas fontes (origem da informação divulgada), caso o conteúdo não tenha fontes, descarte imediatamente a mensagem, fotos, textos, etc. – Neste ponto a probabilidade de ser verdade cairá para zero!
  • Revise profundamente tudo o que você leu, ouviu, aprendeu, etc. Compare tudo com os avanços e descobertas científicos atuais. Esta é a conduta para alcançar a assertividade!
  • Nunca propague Fake News (notícias falsas ou com base em inexistentes)!

A informação contida em bíblias é segura?

Toda informação contida em livros bíblicos tem como base as crenças em inexistentes, portanto, não são confiáveis ou contém atrasos culturais, morais, éticos e sociológicos!

Prova

Ex: A x 0 = 0 neste caso, uma informação cuja fonte é inexistente – mesmo que esteja escrito como referência ou como significado – terá o mesmo efeito de multiplicar por 0, o resultado será nulo! Torna-se um PCI (produto de crenças em inexistentes). Deveria ser obrigatório que esses livros viessem com a seguinte inscrição nas capas: cuidado com a leitura, este conteúdo é duvidoso!

O que são existenciais?

Existenciais são sinônimos de existência, é a qualidade de tudo o que é real ou existe, e é também a base de todas as outras coisas. Podemos definir a existência como: possibilidades espaciais/subespaciais, temporais em nosso universo.

Em lógica um existencial recebe a letra:

Ex: ∃ x:P(x) significa que há pelo menos um x para o qual P(x) é verdadeiro.

Consequências devastadoras das crenças em inexistentes

  • Se você negar o coronavírus e publicar isso, você será severamente penalizado! Poderá ter suas redes sociais bloqueadas, canais do Youtube excluídos, etc.
  • Se negar as mudanças climáticas, idem!
  • Você se nega a receber a vacina do coronavírus e se pegar o vírus poderá morrer!
  • Você terá dificuldades em aceitar a plena automatização das tarefas humanas por robôs, IAs, e integração das cadeias produtivas na 4ª revolução industrial.
  • Você terá dificuldades em compreender as viagens espaciais e os avanços da tecnologia.

Não tente atribuir juízo de valor para inexistentes

As consequências da tentativa de atribuir juízos de valor para coisas que não existem, pode causar a nulidade da valoração dos assuntos em questão. Embora todos tenham o direito de expressar suas ideias e pensamentos, estamos sujeitos às regras existenciais.

Sobre liberdade de expressão

Qualquer pessoa tem direito à liberdade de expressão. Este direito compreende a liberdade de opinião e a liberdade de receber ou de transmitir informações ou ideias sem que possa haver ingerência de quaisquer autoridades públicas e sem considerações de fronteiras.

O exercício destas liberdades, porquanto implica deveres e responsabilidades, pode ser submetido a certas formalidades (∃), condições (∃), restrições (∃) ou sanções (∃), previstas pela lei (∃), que constituam providências necessárias, numa sociedade democrática, para a segurança nacional, a integridade territorial ou a segurança pública, a defesa da ordem e a prevenção do crime, a proteção da saúde ou da moral, a proteção da honra ou dos direitos de outrem, para impedir a divulgação de informações confidenciais, ou para garantir a autoridade e a imparcialidade do poder judicial.

(∃) = regras dos existenciais.

Quem determina o que existe e o que não existe?

  1. Lógica matemática (infraestrutura básica de nosso pensamento – educação básica)
  2. Leis da física (100% existenciais e descobertas – educação básica)
  3. Ciência (extremamente confiável)
  4. Tecnologia (aprimoramento do ser humano)
  5. Epistemologia (estudo aprofundado do conhecimento)

Estes são os cinco pilares que determinam a identificação, normalização e propagação dos existenciais. Não há entidades, escolas, ou grupos que irão determinar o que existe ou não, essa determinação está condicionada ao grau educacional de cada ser humano no planeta, são percepções provadas e não acidentais.

Crença em inexistentes é pura falta de educação!

Em pleno século XXI é inadmissível que alguém em plena consciência e com sanidade cognitiva, com acesso à educação fundamental, ainda acredite em coisas que não existem. Se você acredita em algo que não pode existir, ou não existe, revise de forma urgente essa crença, caso contrário poderá trazer consequência devastadoras em sua vida e de seus semelhantes. Ex.: acidentes graves no trânsito (confiar no santinho pendurado no espelho retrovisor e dormir ao volante), morte por coronavírus (sua crença em seres inexistentes, sua igreja ou grupos do qual você faça parte, convenceram você a não tomar vacinas).

Só atingiremos a maturidade política no momento em que conseguirmos dispensar qualquer cultura metafísica, qualquer cultura que creia em poderes e forças não-humanas.

{John Dewey}.

Resumo epistemológico

  • Existência = natureza ou leis da física (100% da existência no universo: matéria, energia, tempo, espaços, subespaços).
  • Inexistência = tudo o que não faz parte das leis da física (0% de existência “não podem existir” deus, deuses, espíritos, alma, etc.).
  • Simulação Cerebral = autopercepção de nós mesmos (é aqui que entra nossa consciência 100% simulada pelo cérebro).
  • Conhecimento = CVJV (crenças verdadeiras, justificas e validadas).
  • Ciência = descoberta e aplicação das leis da física
  • Tecnologia = aplicação da ciência.
  • Dado = informação armazenada.
  • Informação = aquisição de conhecimento.

Resumo filosófico

Convenções sobre operações indexadas no conjunto vazio

  • Somas vazias = 0
  • Produtos vazios = 1
  • Uniões vazias = ∅
  • Interseções vazias = o conjunto universo
  • Permutações vazias! = 1
  • O conjunto vazio { } = ∅ determina a origem dos microestados ou da informação que será medida.

Fórmula para a mínima possibilidade de medição:

μ(∅) = 0

O campo da Subjetividade

Os espaços/subespaços matemáticos (ao contrário dos espaços/subespaços físicos que são objetivos e independem de nossos conceitos) formam o campo da subjetividade, entendida como o subespaço íntimo do indivíduo, ou seja, como ele “instala via simulação cerebral” a sua opinião ao que é dito (mundo interno) com o qual ele se relaciona com o mundo social e físico (mundo externo), resultando tanto em marcas singulares na formação do indivíduo quanto na construção de crenças e valores compartilhados na dimensão cultural que vão constituir a experiência histórica e coletiva dos grupos e populações. A psicologia social utiliza frequentemente esse conceito de subjetividade e seus derivados como formação da subjetividade ou subjetivação. Etimologia: do latim subjectivus (subicere: “colocar sob” + jacere: “atirar, jogar, lançar”).

A subjetividade é o mundo interno simulado pelo cérebro de todo e qualquer ser humano. Este mundo interno é composto por emoções, sentimentos e pensamentos.

Na teoria do conhecimento, a subjetividade é o conjunto de ideias, significados e emoções que, por serem baseados no ponto de vista do sujeito, são influenciados por seus interesses e desejos particulares. Tem como oposto a objetividade (espaços/subespaços da física), que se baseia em um ponto de vista intersubjetivo, isto é, que pode ser verificável por diferentes sujeitos e medido, inclusive por dispositivos e aparatos da tecnologia.

Do ponto de vista da sociologia, a subjetividade se refere ao campo de ação e representação dos sujeitos – sempre condicionados a circunstâncias históricas, políticas e culturais.

Através da nossa subjetividade construímos um espaço relacional, ou seja, nos relacionamos com o “outro”. Este relacionamento nos insere dentro de esferas de representação social em que cada sujeito ocupa seu papel de agente dentro da sociedade. Estes sujeitos desempenham papeis diferentes de acordo com o ambiente e a situação em que se encontram, o que segundo Goffmam pode ser interpretado como ações de atores sociais. Somente a subjetividade contempla, coordena e conhece estas diversas facetas que compõem o indivíduo.

O campo das psicologias confronta-se cada vez mais com as exigências éticas colocadas pela necessidade de reconhecimento da alteridade como elemento constitutivo das subjetividades singulares.

As diferenças nos modos de subjetivação e constituição das subjetividades relacionam-se com a dimensão ética na medida em que esta sistematiza e justifica racionalmente um determinado código ou padrão de conduta, um determinado quadro de normas e valores e uma determinada postura a ser ensinada aos e exigidas dos sujeitos. As éticas, portanto, são como dispositivos “ensinantes” de subjetivação: elas efetivamente sujeitam os indivíduos, ensinando, orientando, modelando e exigindo a conversão dos homens em sujeitos morais historicamente determinados.

E sobre aqueles que trabalham divulgando inexistentes?!

Muitas vezes as pessoas me perguntam: e aqueles que trabalham nas profissões como escritores de ficção, padres, pastores, astrólogos, artistas, ilusionistas – os mágicos, as homeopatias, psicanalistas, espiritualistas, ufologistas, etc.

Quando o intuito é beneficiar o próximo e não lhes causar danos, prestando um serviço que seja digno e venha ao amparo das pessoas, esse tipo de inexistentes tornam-se um nicho e tendem a se dissipar com o tempo, porque os existenciais se sobrepõem em todas as coisas.

Núcleo existencial

Em todos os espaços/subespaços o conjunto vazio ∅ vem primeiro, portanto, o conjunto vazio ∅ funciona como um autovetor e autovalor, constituindo o núcleo existencial.

Quando o conjunto vazio ∅ não estiver presente, algo precisa vir em seu lugar – que seja um existente, não é mesmo? 😉

{RC}

Referências Bibliográficas

Qual a diferença entre Conhecimento, Informação e Dados? – Comece 2022 com essas dúvidas resolvidas!

Desejo a todos um 2022 repleto de experiências incríveis, muita saúde, foco em crescimento e constante aquisição de conhecimento. Por falar nisso, não poderia deixar de resumir esse assunto com base nas minhas últimas pesquisas. Boa leitura!

{RC}.

O que é conhecimento?

Conhecimento, do latim cognoscere (ato de conhecer), como a própria origem da palavra indica, é o ato ou efeito de conhecer. Como por exemplo: conhecimento das leis, conhecimento de um fato, conhecimento de um documento, termo de recibo ou nota em que se declara o aceite de um produto ou serviço; saber, instrução ou cabedal científico (homem com grande conhecimento), informação ou noção adquiridas pelo estudo ou pela experiência, (autoconhecimento) consciência de si mesmo.

No conhecimento temos dois elementos básicos: o sujeito (cognoscente) e o objeto (cognoscível), o cognoscente é o indivíduo capaz de adquirir conhecimento ou o indivíduo que possui a capacidade de conhecer. O cognoscível é o que se pode conhecer.

Qual a origem do conhecimento?

A origem é o núcleo de nossa capacidade de adquirirmos conhecimentos, reside nos espaços/subespaços subjacentes. Você poderá ler os detalhes técnicos no meu outro poste: Qual a origem do conhecimento? A resposta é o conjunto ∅

Crítica à teoria CVJ e contraexemplos de Edmund Gettier

O conhecimento pode ser compreendido como uma “crença verdadeira justificada (CVJ)”, isto é, um dado sujeito tem uma crença – opinião – essa crença é verdadeira e o sujeito tem boas razões para a justificativa. Assim sendo, crença, verdade e justificação são condições necessárias para que se constitua conhecimento, mas apenas no seu conjunto são suficientes. Crença é uma condição necessária pois não é possível conhecer sem acreditar. Por outro lado, esta não constitui uma condição suficiente pois esta não passa de uma opinião, podendo, então, ser falsa, saber/conhecer é, portanto, diferente de acreditar. Verdade é uma condição necessária uma vez que o conhecimento é factivo (expressa a verdade), ou seja, não se podem conhecer falsidades. No entanto esta não é por si só uma condição suficiente, dado que podemos acreditar em alguma coisa que é verdadeira sem que saibamos que esta é verdadeira. Justificação é uma condição necessária já que é necessário haver boas razões nas quais apoiar a verdade de uma crença. Contudo a justificação não é por si uma condição suficiente, porque ter razões para acreditar em algo não garante que essa crença seja verdadeira.

A (V)alidação de CVJ torna-se obrigatória

Ao analisar os contraexemplos de Gettier, podemos perceber sem sombra de dúvidas que CVJ (Crença Verdadeira e Justificada), é insuficiente para definir conhecimento. Um quarto critério se faz necessário: a validação pós justificativa).

É importante distinguir entre casos de conhecimento e casos de crença meramente verdadeira, mais especialmente porque um erro de julgamento, neste caso, significa o confisco ou a continuação da vida de outro ser humano. É, portanto, seguro dizer que, neste e em outros casos semelhantes, não sustentar a distinção acima mencionada é desastroso não apenas na lógica epistêmica, mas também moralmente.

A coesão definitiva de CVJV, subespaços e teoria da simulação cerebral

Para tornar o conhecimento coeso e adaptado às tecnologias atuais, fiz adição da teoria da simulação cerebral com subespaços – embora isso torne o tema um pouco complexo -, considero de extrema importância para evitar o chamado ED (Erro Degrau). Esse erro é o principal causador das falhas educacionais, principalmente em países do terceiro mundo como no Brasil.

Um exemplo de erro degrau: pensar que a energia é transmitida por dentro dos fios elétricos quando na verdade é por fora deles (nos subespaços eletromagnéticos) – segue as provas nas referências bibliográficas, tratarei desse assunto breve em um novo poste.

Como nasceu a teoria da informação?

A origem da informação ou teoria da informação nasceu com o particionamento binário de espaço proposto por Shannon. Leia meu resumo em: Teoria da informação e entropia – como passamos do conhecimento para a informação?

Convenções sobre operações indexadas no conjunto vazio

  • Somas vazias = 0
  • Produtos vazios = 1
  • Uniões vazias = ∅
  • Interseções vazias = o conjunto universo
  • Permutações vazias = 1

O conjunto vazio { } = ∅ determina a origem dos microestados ou da informação que será medida.

{RC}.

O que são dados?

Um conjunto de informações que depende da forma (espacial ou subespacial) e tipo (estruturados ou não estruturados). Ex: uma letra, uma palavra, símbolos matemáticos, uma página de texto, um livro em formato pdf, um livro em papel, uma planilha, um formulário em papel ou online, etc. Os dados podem ser classificados no tipo: estruturados e não estruturados.

Resumo Epistemológico

Referências Bibliográficas

Psicanálise é considerada pseudociência!

Créditos imagem: pinimg.com

Quanto mais a ciência avança, mais precisão temos em nossos estudos e análises. Utilizando o repertório técnico científico de hoje que se atualiza e avança no tempo, as dúvidas que tínhamos sobre métodos alternativos de tratamento psicológico, que neste caso é a psicanálise, ganhou pleno status de pseudociência.

Os critérios que foram determinantes nessa classificação podem ser estudados e analisados conforme o resumo abaixo. Hoje nossa referência mais assertiva para determinar o que é ou não uma pseudociência, situasse na nova demarcação do conhecimento: CVJV.

Obs.: pseudociência é PCI (um produto de crenças em inexistentes).

Resumo

Introdução: A psicanálise já foi classificada como pseudociência no passado. Karl Popper foi um daqueles que traçou objeções à doutrina psicanalítica, usando do critério da falseabilidade. Entretanto, a falseabilidade não pode mais ser considerada suficiente para resolver o problema, já que implica em dificuldades consideráveis, e melhores alternativas para abordar a questão estão disponíveis. Objetivo: Este artigo tem por objetivo avaliar o status científico da psicanálise em relação ao problema da demarcação. Método: Para fazer isso, o critério de Sven Ove Hansson foi utilizado: este consiste em um conjunto de condições suficientes e necessárias, que é complementado com uma lista de multicritérios que auxiliam a identificar pseudociências. Foi analisado o quanto a psicanálise se encaixava em cada um dos sete itens da lista de Hansson, além de ser proposta a adição de um oitavo item. Resultados: Os resultados mostraram que a psicanálise era compatível com todos os oito itens da lista de demarcação de pseudociências. Conclusão: Ao final, a conclusão foi de que mesmo que a falseabilidade deva ser descartada, as evidências sugerem que ainda temos motivos suficientes para afirmar que a psicanálise é uma pseudociência, já que ela se distancia significativamente dos padrões de qualidade científicos.

Qual a diferença entre Ciência e Pseudociência?

A diferença reside nos métodos utilizados, a ciência usa CVJV e as pseudociências não.

Clique aqui para acesso direto ao artigo original em PDF

Referências Bibliográficas

Saiba identificar PCE e PCI no campo da simulação cerebral

O que é PCE?

Defino PCE como sendo o produto das crenças em existentes. Todas as coisas que integram as leis da física são existenciais, se algo não faz parte das leis da física/natureza: pode ser apenas uma ideia, conceito, vislumbre, imaginação, projeção psicológica, etc.

Matrix – Pílula. Créditos: Boomer M

Ex: a matemática é uma invenção de cérebros e não faz parte das leis da física. Isso foi provado pela teoria da incompletude de Kurt Godel.

Entretanto, muito cuidado com os dilemas – por exemplo – a crença em Deus também foi inventada pelo ser humano, mas não valida absolutamente nada, em razão de ser “o maior erro” interpretativo de nossos ancestrais na tentativa de compreender a natureza. Ao contrário da Matemática, a ciência mais importante da humanidade, 100% de todas as nossas invenções tecnológicas são validadas de forma obrigatória e sem ressalvas pela matemática.

Alusão à escolha da pílula vermelha no filme Matrix.

Obs: não é alguém que te dá a pílula (escolha por PCE), é você que decide seguir o caminho de PCE.

PCE não admite vieses, pois para que possamos chegar ao nível do conhecimento das coisas existenciais: nossas crenças, ideias, atitudes, teses e proposições, vão na direção da identificação de verdades que precisam ser válidas e justificadas.

PCE não admite dogmatismos e não segue nenhuma filosofia, tornando-se a verdade nua e crua que independe de nossos viéses, sendo necessário ter validade comprovada.

Ex: O método científico.

Observe o esboço contendo os principais passos do método científico. O método começa pela observação, que deve ser sistemática e controlada, a fim de que se obtenham os fatos científicos. O método é cíclico, girando em torno do que se denomina Teoria Científica, a união indissociável do conjunto de todos os fatos científicos conhecidos e de um conjunto de hipóteses testáveis e testadas, capaz de explicá-los. Os fatos científicos, embora não necessariamente reproduzíveis, devem ser necessariamente verificáveis. As hipóteses devem ser testáveis frente aos fatos, e para tal, falseáveis.

O método científico refere-se a um aglomerado de regras básicas dos procedimentos que produzem o conhecimento científico, quer um novo conhecimento, quer uma correção (evolução) ou um aumento na área de incidência de conhecimentos anteriormente existentes.

Alusão à pílula (metáfora) do filme Matrix – nas explicações citadas neste poste, é seu cérebro que gera e mantém toda a sua realidade e existência!

Crenças e o método científico

É importante considerar a necessidade da falseabilidade das hipóteses científicas e as consequências advindas desta restrição. Considere como exemplo as seguintes proposições: “A salamandra e o rato são anfíbios” e “A maça é verde ou não é verde”. A primeira admite os valores lógicos falso e verdadeiro, sendo possível demonstrar que seu valor lógico é em verdade falso ao constatar-se experimentalmente que o rato não é um anfíbio. Contudo, a segunda expressão não é testável pois – conforme proposta – ela sempre será verdadeira, independentemente da cor da maça obtida experimentalmente. Analise com cautela o exemplo e perceba que, em essência, frases não falseáveis não carregam informação útil (ou seria: não carregam informação alguma!?), pois uma informação sempre pode ser falsa ou verdadeira. Para tal a primeira é condizente com uma hipótese científica, a segunda não. Um exemplo de hipótese científica – testável – e até o presente momento com valor lógico verdadeiro é “O valor da velocidade da luz é uma constante e independente do referencial inercial adotado”.

Como usar PCE?

É simples e complexo ao mesmo tempo, o primeiro passo é substituir o seu sistema de crenças falho de forma progressiva via confronto do que você pensa saber com as leis da física – não é admitido qualquer tipo de dogmatismo. É uma atitude independente, um posicionamento individual – é a busca pelo autoconhecimento. Esse conhecimento não está associado a nenhuma pessoa, nem instituição, é a busca pela verdade que pode ser identificada, provada – e refutada inclusive – com os avanços progressivos de nossa ciência contemporânea. E lembre-se: não existem verdades absolutas, tipo: Deus (inexistente inventado pelas tradições retrógradas e ultrapassadas de nossos ancestrais. As pessoas insistem em acreditar nessa ideia e isso às afasta do autoconhecimento).

Por onde começar?

1 – Procure refutar seu sistema de crenças atual

Há 50% de chances de seu sistema de crenças estar errado e precisar de revisão!

2 – Não tenha dúvidas sobre a origem do conhecimento

O conhecimento é uma junção da simulação cerebral, biológica, subespacial com a realidade física – ou seja – a fundação reside no Vazio { }; ter dúvidas sobre esse assunto é natural, mas não resolver a dúvida impedirá você de alcançar um nível superior de pensamento.

3 – Identifique (EDs) erros degrau

Não importa qual sua área de atuação – ou formação, todas as áreas que representam uma aquisição formal/informal de conhecimento possuem lacunas que chamo: erros degrau – farei um poste explicando em detalhes o que são esses erros. Um exemplo: mente e mentalidade – não existem fora da simulação e são conceitos comuns – não deveriam ser usados – e impedem a evolução de nosso pensamento.

Resumo

O que é PCI?

PCI (produto das crenças em inexistentes) é responsável por todos os piores problemas e atrocidades humanas que se tem notícia, é o ponto máximo da ilusão humana. É um estado de involução, contrário à natureza do universo que está intimamente relacionado às leis da física.

Ex: todas as religiões, seitas, credos populares, sistemas políticos insustentáveis, pseudociência, criacionismo, analfabetismo, dogmatismo, crenças em entidades inexistentes: deus, deuses, espíritos, panteísmo, projeções patológicas, etc.

Como ocorre a nulidade do conhecimento?

A nulidade ocorre quando a sua fé, seu sistema de crenças não é capaz de fazer você perceber suas verdadeiras origens humanas no sentido biológico, você não é capaz de perceber o vazio { }extremamente bem fundado – e procura justificativas dentro do seu sistema de crenças falho (dogmatismo) – apelo ao viés cognitivo – e incapaz de te conectar à sua simulação (você também não sabe que é uma simulação?!) com a própria condição existencial e natural: a consciência em contato com a realidade objetiva.

A tragédia do sistema educacional

Quando alguém termina seus estudos de mestrado e até doutorado/pós-doutorado em determinada área para se tornar uma referência em educação e essa pessoa se abraça com PCI – em detrimento de PCE – isso indica que nosso sistema educacional não foi suficiente para superar a tradição retrógrada encontrada em nossa humanidade em pleno século 21.

Créditos imagem: CC {rcristo.com.br}

Não esqueça: PCE (junção da nossa simulação com a realidade física existencial) é o único caminho seguro que te levará para a aquisição plena de conhecimento, qualquer outro caminho é PCI. Nascemos e morreremos na simulação, não há acesso direto à realidade física a partir da simulação sem o filtro: CVJV (conhecimento verdadeiro, justificado e válido), não há espaços/subespaços com conexão direta de PCI para a realidade física – não há atalhos – a simulação começa em seu nascimento e acabará com a morte do cérebro decorrente da morte do corpo.

A ciência não prova nada (no sentido isolado do termo – tanto no micro quanto no macrocosmos), mas nos concede as ferramentas para que possamos alcançar a realidade existencial que chamo PCE. A ciência infere afirmações sobre a realidade. Às vezes as declarações são de impressionante precisão, às vezes são bastante vagas. Ciência nunca atinge resultados exatos (absolutos que são inexistentes). A matemática – nossa melhor invenção – fornece provas, mas é desprovida de realidade, pois a matemática não existe fora da simulação, embora as leis da física sejam cunhadas em matemática, essas leis continuam sendo da física – não podemos inventar leis da física, somente descobri-las. O universo nasceu no vazio { } com suas próprias leis da física!

Somos escravos na simulação?

Você somente será escravo na simulação se não perceber PCI – acorde do seu sono dogmático (despertar do sono dogmático é deixar de tomar como óbvio que podemos justificar pelo pensamento puro o nosso conhecimento de aspectos fundamentais da realidade física). – o simples fato dessa percepção ativará as suas redes neurais para buscar CVJV e o autoconhecimento.

E o que é uma verdade?

A verdade está lá fora? Não!
A verdade está dentro? Não!
Onde está a verdade? Em lugar nenhum! { }!

Caso a sua visão de mundo entre em conflito com os fatos e descobertas científicas ou cosmológicas, significa que está na hora de aceitar o novo paradigma (compatibilizar seus pensamentos com esse progresso), isso é natural e perfeitamente harmonioso. O caminho inverso não é verdadeiro, seus pensamentos jamais poderão negar os fatos (descobertas científicas).

{RC}

A verdade é uma composição (junção) de nossas crenças, proposições, opiniões, etc., com a realidade física. Uma verdade é uma justificativa aceitável, uma prova, razão – como síntese podemos chamar de existência!

Se ao ler este poste você conseguir notar algo errado com seu sistema de crenças – não importa sua idade ou grau educacional – conseguirá acender um palito de fósforo que pode gerar iluminação suficiente para ver o caminho até o interruptor e acender a luz na sua simulação. Perceba sua simulação e deixe de ser manipulado. {RC}.

Referências Bibliográficas

Somos uma simulação gerada pelo nosso cérebro!

Créditos imagem: CC {rcristo.com.br}

Figura 1 – nesta figura vemos a representação de nosso cérebro na interseção entre a realidade física e a realidade simulada. O cérebro está inserido na realidade física e nós somos apenas uma simulação biológica espacial, cujo nosso corpo é espacial em razão de ocupar o espaço físico, e todas as nossas percepções dentro do espaço da simulação são sensoriais/subespaciais. Para saber o que é espaço e subespaço clique neste link.

Crítica da metafísica

A metafísica causou uma confusão sem precedentes tanto na filosofia quanto no uso de seus atributos na tentativa de explicar as coisas existenciais – o filósofo Ludwig Wittgenstein em seus trabalhos de filosofia analítica: “O tratado Lógico Filosófico”, e posteriormente em outro trabalho: “Investigação Filosóficas”, explicou de forma consistente o nexo entre nossas percepções e a possível representação na linguagem. Ao ler as Investigações Filosóficas, percebi que ele quase resolveu as questões principais das contradições encontradas na própria filosofia via crítica da estrutura lógica subjacente à forma aparente das proposições. Wittgenstein também defende a ideia de que não há problemas filosóficos genuínos; pois, os problemas filosóficos surgem da falta de compreensão do funcionamento da linguagem e da lógica dos conceitos.

A prática sem teoria é como o marinheiro que embarca em um navio sem leme e sem bússola e fica para sempre incerto aonde pode chegar.

Leonardo da Vinci, caderno 1, Ano 1490 EC.

O que é simulação?

Figura 2 – Cérebro no espelho: créditos Google 3D.

Uma simulação é uma imitação aproximada da realidade, operação de um processo ou sistema que representa sua evolução ao longo do tempo. Dado um problema no contexto de uma situação original chamada de alvo, a analogia é uma conexão baseada na similaridade estrutural entre o alvo e um caso diferente chamado de base ou origem. Uma vez que a similaridade é considerada válida ou sólida, informações adicionais úteis podem às vezes ser inferidas no alvo que neste caso é a compreensão do que é real ou físico, daquilo que é simulado ou representado pelo nosso cérebro.

Somos uma simulação 100% gerada pelo nosso cérebro

Com os avanços da neurociência e principalmente das redes neurais biológicas que operam em nosso cérebro – desde o momento de nossa concepção no período de desenvolvimento placentário dentro do ventre de nossa mãe, até ao último segundo de nossas vidas – tudo o que fomos, fizemos, aprendemos e vivemos é uma simulação espaço temporal biológica gerada pelo nosso cérebro.

Conheça a Estrutura do Neocortex para facilitar o entendimento da simulação. Allen Institute.

Nosso cérebro é físico e espacial; portanto, segue todos os princípios físicos, biológicos, químicos que são determinados de forma integral pelas leis da física – descobertas por nós e que regem e são válidas em todo o universo. Nós (seres que possuem cérebros) por outro lado, somos uma projeção espaço temporal biológica tanto consciente quanto inconsciente gerada pelo nosso cérebro.

Exemplo1: O processamento da visão pelo cérebro

Figura 3 – representação do nosso sistema visual. Créditos Imagem Dr. Daniel Graham.

As informações fluem do olho para o tálamo, para o córtex e, em seguida, de volta para o tálamo (e de novo para o córtex). Cerca de 5% das entradas neurais para a área visual principal do tálamo vêm dos olhos; o resto vem do córtex, incluindo o córtex visual primário (área V1) e várias outras áreas do córtex, bem como outras partes do cérebro. As conexões em laço são uma fonte importante de estrutura de rede no caminho visual do cérebro, o que poderia suportar mecanismos semelhantes à Internet de comunicação de rede flexível.

Percepção visual

Figura 4 – Diagrama esquemático do olho humano.

Quando um ambiente está com uma baixa luminosidade, o olho humano apresenta baixa acuidade visual, situação que é conhecida como visão escotópica e que funciona através dos bastonetes. Por isso existe uma ausência de cores. Em contrapartida, quando há muita luz, são os cones que possibilitam a percepção de cores, pois são eles que funcionam determinando a visão fotópica, caracterizada por uma alta acuidade visual. Quando o ambiente apresenta condições intermediárias de iluminação, as duas células contribuem para produzir a visão mesópica (uma combinação dos dois tipos das visões citadas anteriormente).

O espectro eletromagnético e o quanto nosso cérebro é capaz de perceber

Figura 5 – Conseguimos ver somente uma pequena faixa de 400 a 750 nanômetros do espectro eletromagnético.

O espectro visível pode ser dividido em subfaixas de acordo com a cor, com a subfaixa do vermelho abarcando os comprimentos de onda longos, a subfaixa do verde ao centro e a subfaixa do violeta abarcando aos comprimentos de onda mais curtos, subdivisões essas facilmente identificáveis na ilustração acima ou mesmo em um arco-íris. Os comprimentos de onda nessa faixa de radiação estão compreendidos entre 370 nm (violeta) e 750 nm (vermelho), sendo comum afirmar-se por aproximação que os comprimentos de onda dessa faixa localizam-se entre os 400 e 700 nanômetros (nm). Em termos de frequência, tem-se por correspondência que o espectro visível define-se pela banda situada entre 400 THz e 790 THz.

O fluxo de informação visual para o tálamo é um pouco como tentar assistir a um jogo de futebol em uma pequena TV enquanto uma sala cheia de pessoas simultaneamente grita suas opiniões sobre o jogo para nós. Todos os neurônios provenientes dos olhos que se conectam às áreas do tálamo relacionadas à visão constituem apenas cerca de 5% das entradas para essas áreas. O resto das entradas vêm de outras partes do cérebro. Em termos gerais, as partes do tálamo envolvidas na visão recebem informações de cerca de 2 milhões de axônios (1 milhão de cada olho). Mas as mesmas áreas recebem entradas de até 40 milhões de axônios de outras partes do cérebro – eles vêm do córtex, do tronco cerebral e de outros lugares. É difícil subestimar a escassez de informações do olho que dão origem à consciência visual simulada: tudo o que veremos é entregue ao tálamo por cerca de 0,002 por cento dos neurônios em nosso cérebro, e esses sinais são muito superados em número pelo feedback de outras partes do cérebro.

O espectro visível não apenas é dependente da espécie como também varia muito de uma espécie animal para a outra. Os cachorros e os gatos, por exemplo, não veem todas as cores que os humanos veem, percebendo do nosso espectro visível apenas as subfaixas do azul à amarela. Enxergam, contudo, geralmente bem em preto e branco, numa nuance de cinzas. Já as cobras veem no infravermelho e as abelhas no ultravioleta, faixas para as quais somos cegos. Conforme dito, nós humanos vemos numa faixa que vai do vermelho ao violeta, passando pelo verde, o amarelo e o azul, contudo mesmo entre os humanos pode haver grandes variações quanto aos detalhes da faixa percebida. Em particular os limites do espectro ótico variam muito de espécime para espécime. Pessoas daltônicas costumam ter dificuldades em visualizar cores contidas em certas faixas do espectro.

A realidade física também é uma simulação?

A resposta é NÃO! Não há evidências de que o espaço físico (cosmos) onde o cérebro e nosso corpo estão inseridos é simulado de alguma forma. As leis da física são válidas em todo o universo e nós as descobrimos com o desenvolvimento de ferramentas tecnológicas cada vez mais avançadas.

Exemplo2

Hubblecast 133

Mostra como a espectroscopia de massa atômica adaptada em dispositivos detectores de extrema precisão, podem até mesmo detectar a composição química de planetas que orbitam outras estrelas em nossa galáxia.

Por que a maioria das pessoas não percebem que são simulações de seus cérebros?

Essa falha está no sistema educacional, isso se chama erro degrau, vou dedicar em breve um poste sobre esse obstáculo ao desenvolvimento humano. O erro degrau é um dos principais responsáveis pelo Viés da Crença em Inexistentes (estão dentro da simulação, mas não existem no universo regido pelas leis da física).

Nosso cérebro é simulado?

A resposta também é NÃO! Todas as coisas que ocupam lugares físicos e espaciais não são simulações, tanto nossos cérebros quanto nossos corpos são físicos; no entanto, todos os seres que se percebem como tal – isso inclui os seres humanos – somos todos simulados por nossos cérebros.

O que é a consciência?

É a percepção integral de nós mesmos, alcança a mais elevada atividade sensorial simulada pelo nosso cérebro.

O que é CVJV?

É o conhecimento: verdadeiro, justificado e validado. É a prova existencial (interseção) que une as projeções geradas pelo nosso cérebro com toda a atividade sensorial à realidade física do universo. Lembre-se: não há nada fora das leis da física!

Obs: em razão do paper de Edmund Gettier, CVJ (Crenças Verdadeiras e Justificadas), não podem mais ser consideradas conhecimento, sendo necessário a adição de um Token V (validador), para retornar à condição e conhecimento.

Projeções saudáveis

Quando todos os nossos pensamentos, sentimentos, consciência, conhecimento, geram atitudes e comportamentos que estão em sintonia com a realidade humana, física e natural. Nossas realizações, alegrias, amor, altruísmo, etc. Podemos chamar também de PCE (Produto das crenças em existentes).

Ex: estudo que nos leva ao desenvolvimento humano pleno: tecnológico, ecológico, ético e cosmológico.

Projeções patológicas e vieses cognitivos

Quando nossas projeções nos afastam de CVJV, perde-se o nexo com a realidade e neste momento a irracionalidade ganha cada vez mais espaço dentro das projeções. Essa irracionalidade leva as pessoas para o campo de PCI (produto das crenças em inexistentes). As projeções neste campo são absurdas e falhas, impedindo as pessoas de saberem a distinção do que é real, natural e físico – comparado com coisas que residem apenas nas projeções, não havendo nenhuma relação com o mundo natural ou às leis da física.

Ex: crenças em deus, deuses, espíritos, panteísmos, religiões, seitas, fé; e todas as bobagens como resultado das crenças nos inexistentes, como: cura quântica, pensamento quântico que são todos pseudociência.

Fenomenologia patológica como resultado de PCI

Muitas pessoas não percebem que suas simulações alcançaram o nível do prejuízo de si mesmo, de suas comunidades e até mesmo em nível cultural geral de um país.

A percepção da simulação elimina a dualidade fenomenológica da espiritualidade

A percepção da simulação cerebral elimina a dualidade da representação espelho da pessoa com o mundo ao seu redor (não há a necessidade de espiritualidade que é inexistente), isto é, aproxima às pessoas dos problemas percebidos (na simulação) daqueles que são apenas imaginários (fora da simulação). O problema fundamental está na falta de compreensão do vazio { }, que é a base ou origem do conhecimento. Portanto, o vazio { } é o elemento atemporal que garante as possibilidades existenciais nos espaços e subespaços.

Ex: pandemia de coronavírus. Está sendo devastadora no Brasil, um país cuja crença do povo está longe de CVJV, onde 80% ou mais da população ainda acredita em inexistentes. Chamo de viés das crenças em inexistentes ao conjunto de absurdos culturais antropológicos que estão obsoletos e ainda são considerados válidos. Lamentável. {RC}.

Referências Bibliográficas

O que é viés cognitivo e como isso nos afeta?

Definição de viés cognitivo

O termo viés cognitivo foi primeiramente introduzido por Amos Tversky e Daniel Kahneman em 1972, e surgiu da experiência de ambos com a enumeracia (Incapacidade para realizar e compreender operações aritméticas simples) das pessoas, ou inabilidade do racionalizar intuitivamente com ordens de grandeza maiores. Juntamente com outros colegas, demonstraram várias maneiras replicáveis nas quais julgamentos humanos e decisões diferem da teoria da escolha racional. Eles explicaram essas diferenças pela heurística, conjunto de regras pelas quais é mais simples para o cérebro levar em conta erros sistemáticos, introduzindo-os.

Estes experimentos tornaram-se o heuristics and biases research program (programa de pesquisa de heurísticas e vieses), que logo se estendeu da psicologia acadêmica para outras áreas, como medicina e ciência política. Isso se tornou um ponto crucial no crescimento da economia comportamental, rendendo a Kahneman o Prêmio Nobel de economia em 2002. Este, mais a frente, juntamente com Tversky, desenvolveu a “teoria da expectativa” como uma alternativa mais realista à teoria da escolha racional.

Como ocorre o viés?

Ilustração do cérebro: créditos pngwings.

Um viés cognitivo (ou tendência cognitiva) é um padrão de distorção de julgamento que ocorre em situações particulares, levando à distorção perceptual, julgamento pouco acurado, interpretação ilógica, ou o que é amplamente chamado de irracionalidade.

Essa falha é causada pela incapacidade natural de nosso cérebro no processamento e assimilação das informações que recebe e processa; portanto, todos nós sem exceções, estamos sujeitos aos erros cognitivos e na maioria das vezes não percebemos que estamos cometendo esses erros.

Segue a lista de vieses e alguns comentários. Clique no título do viés para acessar as informações completas.

Viés de informação

É a tendência humana que diante de uma questão ou problema, buscar por mais informações que o necessário para tentar solucioná-lo. Causa perda de tempo e a pessoa encontra dificuldades em atingir seus objetivos.

Ex.: você sabe o caminho para chegar do ponta A ao ponto B, mas prefere seguir a informação do GPS de seu Smartphone, mesmo sabendo que o caminho mais rápido é diferente do escolhido pelo aparelho. Você confia em excesso na informação que está recebendo no momento e isso atrapalha suas decisões.

Viés de confirmação

Também chamado de viés confirmatório ou tendência de confirmação, é a tendência de se lembrar, interpretar ou pesquisar por informações de maneira a confirmar crenças ou hipóteses iniciais.

Ex.: você acredita, pensa acreditar ou aceita como verdade coisas que partem do seu imaginário de sua cultura e procura a todo custo validar essa crença.

Viés do Efeito Dunning–Kruger

Tendência de pessoas pouco qualificadas de superestimarem suas próprias habilidades. É um fenômeno que leva indivíduos que possuem pouco conhecimento sobre um assunto a acreditarem saber mais que outros melhores preparados, fazendo com que tomem decisões erradas e cheguem a resultados indevidos; é a sua incompetência que restringe sua capacidade de reconhecer os próprios erros. Estas pessoas sofrem de superioridade ilusória.

Em contrapartida, a competência real pode enfraquecer a autoconfiança e algumas pessoas muito capacitadas podem sofrer de inferioridade ilusória. Esses indivíduos podem pensar que não são muito capacitados e subestimar as próprias habilidades, chegando a acreditar que outros indivíduos menos capazes também são tão ou mais capazes do que eles. A esse outro fenômeno dá-se o nome de síndrome do impostor.

Ex.: a maioria dos políticos são incompetentes para ocupar o cargo eletivo, por não possuírem a capacidade intelectual ou formação em administrar suas posições, isso acarreta em decisões equivocadas e prejuízos para nosso país.

Dunning e Kruger propuseram que, em relação a uma determinada habilidade, as pessoas incompetentes irão:

  • falhar em reconhecer sua própria falta de habilidade;
  • falhar em reconhecer as habilidades genuínas em outras pessoas;
  • falhar em reconhecer a extensão de sua própria incompetência;
  • reconhecer e admitir sua própria falta de habilidade depois que forem treinados para aquela habilidade.

Viés da Crença em Inexistentes

Venho estudando este viés há mais de 20 anos e considero o pior de todos. Este viés é aceito por nossa cultura e estabelece como verdadeiro as orientações bíblicas em detrimento às descobertas científicas. As consequências podem ser observadas no tratamento da pandemia de coronavírus no Brasil. Os crentes em inexistentes tendem a negar a existência do vírus, preferindo a orientação dos grupos, templos, etc., ao qual fazem parte. Inclusive cometem o erro de tomar medicação inadequada para tentar conter o vírus. Leia a respeito!

O resultado do viés da crença em inexistentes é mostrado de forma nítida e objetiva, basta olhar para o gráfico abaixo:

Os países que negam a ciência e usam crenças para tratar o óbvio como o Brasil, estão vivendo o dilema e as consequências da crença em inexistentes. O coronavírus é extremamente eficiente em infectar quem nega sua existência. Clique no gráfico e observe a posição do Brasil na pandemia de coronavírus em 2021.

Estatísticas compiladas oficiais COVID19 Brasil com atualização constante

Clique neste imagem e será encaminhado para os dados atualizados.

O brasileiro é o segundo povo mais atrasado do planeta (que vergonha!)

Créditos: Observatório Terceiro Setor Fonte: IPSOS – Perigos da Percepção 2017

Os povos, assim como ocorre com o Brasil, que insistirem em acreditar em inexistentes (um grave viés cultural e educacional), estarão condenados ao fracasso em pleno século 21.

Segue orientações para estudo

Para que as coisas funcionem e possamos colocar nosso pensamento em plena harmonia no contexto atual, se faz necessário usar a integridade matemática. Por meio dessa integridade, atingiremos o conhecimento verdadeiro e justificado.

Conheça novo método para o estudo da matemática. Clique na imagem para acesso direto. Créditos: Hung-Hsi Wu

Conclusão do pensamento matemático

A matemática não admite “verdades absolutas – inexistentes”. Em vez disso, a maioria dos matemáticos trabalha dentro do sistema de axiomas conhecido como Zermelo-Fraenkel com escolha, ou ZFC para ser breve. ZFC formaliza o conceito de conjunto, uma abstração de uma coleção de objetos, chamados elementos. Acredita-se que o ZFC seja logicamente consistente e a “correção” afirmações da matemática são avaliadas de acordo com a “comprovabilidade” e “consistência lógica” em relação ao ZFC. Teoremas provados em ZFC são coloquialmente considerados “verdadeiros”. Estritamente falando; no entanto, os matemáticos não encontram verdades metafísicas, mas, em vez disso, deduzem conclusões lógicas partindo de suposições chamadas hipóteses.

Obs.: não existe matemática na natureza ou em nosso universo. A matemática foi inventada e desenvolvida por nós humanos – única civilização encontrada no universo conhecido, até o momento 03/2021!

{RC}
  • Definições: Cada conceito é definido de forma clara e precisa de modo que não haja ambiguidade sobre o que está sendo discutido.
  • Precisão: todas as afirmações são precisas, especialmente as hipóteses que garantem a validade de uma afirmação matemática, o raciocínio em uma prova e as conclusões que seguem de um conjunto de hipóteses.
  • Raciocínio: Todas as afirmações, exceto as suposições básicas inevitáveis, são apoiadas por raciocínio.
  • Coerência: Os conceitos e habilidades básicos são logicamente entrelaçados para formar um único tecido e as interconexões entre eles são reveladas de forma consistente.
  • Objetivo: O objetivo matemático por trás de cada conceito e habilidade é claramente apresentado de modo a não deixar dúvidas sobre por que está onde está.

Referências Bibliográficas

Matemática do Vazio (resolva equívocos e pense com clareza!)

O ser humano alcançará o máximo estágio evolutivo após conseguir superar todas as crenças em todo tipo de inexistentes, quando alcançarmos essa meta, saberemos de forma permanente que não poderá existir espaços/subespaços sem que o vazio não esteja presente. E não importa quão grande seja nosso universo, o vazio existe em todos os espaços. O vazio é um autovalor e autovetor em todos os espaços de conhecimento.

Sabemos que o conjunto ∅ existe, é contável e bem fundado. Se algo não puder ser contado é nulo e não poderá fazer referências ao conhecimento!

O produto da crença em inexistentes é sempre nulo.

PCI = NULL {nulo}.

{RC}

Quem tem por que viver, suporta qualquer como.

{Nietzsche}

O vazio é origem de tudo, caso você se sinta vazio, não se preocupe, esta é a melhor oportunidade para recomeçar!

{RC}

Característica do conjunto ∅

O conjunto vazio é um subconjunto de A.
∀A: ∅ ⊆ A
A união de A com o conjunto vazio é A.
∀A: A U ∅ = A
A interseção de A com o conjunto vazio é o conjunto vazio.
∀A: A ∩ ∅ = ∅
O produto cartesiano de A e o conjunto vazio é o conjunto vazio.
∀A: A × ∅ = ∅
O conjunto vazio possui as seguintes propriedades
Seu único subconjunto é o próprio conjunto vazio.
∀A: A ⊆ ∅ ⇒ A = ∅
O conjunto de potência do conjunto vazio é o conjunto que contém apenas o conjunto vazio:
2^∅ = {∅}
Seu número de elementos (isto é, sua cardinalidade) é zero:
|∅| = 0
Uma soma vazia é zero:
Soma {{}} = 0
Um produto vazio é um:
Produto {{}} = 1
Uma permutação vazia também é um:
0! = 1

Exemplo 1

Existe um conjunto vazio ∅ que não contém elementos. Para todos 𝑥, a declaração 𝑥 ∈ ∅ é falsa. Em particular, para cada conjunto 𝐴 a implicação lógica “𝑥 ∈ ∅ implica 𝑥 ∈ 𝐴” é vazia (tem uma hipótese falsa).

Consequentemente, ∅ ⊆ 𝐴 é verdadeiro para todos em 𝐴.

Observação

Créditos imagem: Pngwig.

O conjunto vazio é único: se ∅ e ∅’ são conjuntos sem elementos, então ∅ ⊆ ∅’ e ∅’ ⊆ ∅ são ambos verdadeiros, então ∅ = ∅’.

Em matemática, sempre restringimos nossa atenção aos conjuntos contidos em um conjunto fixo 𝒰, chamado universo. Os subconjuntos específicos de 𝒰 são convenientemente descritos usando a notação do construtor de conjuntos, na qual os elementos são selecionados de acordo com as condições lógicas formalmente conhecidas como predicados.

A expressão {𝑥 em 𝒰|𝑃(𝑥)} é lida “o conjunto de todos 𝑥 em 𝒰 de modo que 𝑃(𝑥)”.

Exemplo 2

A expressão {𝑥 em Y|𝑥 > 0}, lida como “o conjunto de todos os 𝑥 em Y de modo que 𝑥 > 0”, especifica o conjunto de + números inteiros positivos.
Para personificar, se 𝒰 é uma população cujos elementos são indivíduos, um subconjunto 𝐴 de 𝒰 é um clube ou organização, e o predicado que define 𝐴 é um cartão de sócio. Examinamos indivíduos 𝑥 para associação 𝐴 verificando se 𝑥 carrega ou não o cartão de associação para 𝐴; ou seja, se 𝑃(𝑥) é verdadeiro ou não.

Exemplo 3

Não pode existir nenhum “conjunto 𝒰 de todos os conjuntos”. Se existisse, o conjunto 𝑅 = {𝑥 em 𝒰|𝑥 ∉ 𝑥}, compreendendo todos os conjuntos que não são elementos de si mesmos, teria a propriedade que 𝑅 ∈ 𝑅 se e somente se 𝑅 ∉ 𝑅. Essa contradição é conhecida como paradoxo de Russell, formulada pelo lógico inglês Bertrand Russell.

Obs: Não confunda o conjunto vazio com o número zero!

Ex: o conjunto {0} ≠ 0 porque {0} é um conjunto com um elemento, ou seja, {{}}, enquanto 0 é apenas o símbolo que representa o número zero.

Exemplo 4

A expressão {𝑥 em Y|𝑥 = 2𝑛 para alguns 𝑛 em Y} é o conjunto de números pares. Muitas vezes, denotamos esse conjunto em 2Y, com a ideia de que o número inteiro geral resulta da multiplicação de algum número inteiro por 2. Da mesma forma, o conjunto de números inteiros ímpares pode ser expresso como 2Y + 1 = {𝑥 em Y|𝑥 = 2𝑛 + 1 para alguns 𝑛 em Y}.

Von Neumann definição de ordinais (cardinalidade)

Na matemática, particularmente na teoria de conjuntos de Zermelo-Fraenkel, o universo de von Neumann, hierarquia de von Neumann dos conjuntos, ou hierarquia cumulativa, abreviado V, é uma classe definida por recursão transfinita: a classe dos conjuntos hereditariamente bem fundados. V é o modelo mais aceito da teoria de conjuntos de Zermelo-Fraenkel, pelo qual pode ser entendido intuitivamente como a classe de todos os conjuntos.

Definição de V

Representação transfinita de Von Newman. (créditos imagem: http://www.pngwing.com).

V é definida por recursão transfinita.

O primeiro nível é o conjunto vazio:

\displaystyle \huge V_{0}:=\emptyset

Para um ordinal α, sendo {\displaystyle {\mathcal {P}}(x)} o conjunto das partes de  x :

\displaystyle \huge V_{\alpha+1}:=\mathcal{P}\left(V_{\alpha}\right)

Para um ordinal limite β:

\displaystyle \huge V_{\beta}:=\bigcup_{\alpha<\beta} V_{\alpha}

É importante ressaltar que existe uma fórmula {\displaystyle \phi (x,\alpha )} da linguagem da teoria de conjuntos de Zermelo-Fraenkel que representa {\displaystyle x\in V_{\alpha }}.

Uma definição alternativa às três últimas, está dada pela fórmula:

Para β um ordinal:

\displaystyle \huge V_{\beta}:=\bigcup_{\alpha<\beta} \mathcal{P}\left(V_{\alpha}\right)

Finalmente, sendo V a união de todos os Vα:

\displaystyle \huge \mathrm{V}:=\bigcup_{\alpha \in \mathrm{O} n} V_{a}

O uso do símbolo de união na última linha constitui um abuso da linguagem, de modo que {\displaystyle x\in \mathbf {\mathsf {V}} } deve ser interpretado como “existe um ordinal \alpha tal que {\displaystyle x\in V_{\alpha }}.

Note-se que para cada ordinal α, Vα é um conjunto; porém V não é um conjunto.

A denominação hierarquia cumulativa é usada pois V está definida sobre os ordinais, de modo que:

Assim podemos resumir o que foi dito acima da seguinte forma:

  • 0 = ∅ = {} Um conjunto vazio ou sem elementos.
  • 1 = 0 U {0} = {∅} = {{}} Um conjunto contendo um conjunto vazio.
  • 2 = 1 U {1} = {0,1} = {∅,{∅}} = {{},{{}}} Um Conjunto contendo 2 conjuntos vazios.
  • 3 = 2 U {2} = {0,1,2} = {∅,{∅},{∅,{∅}}} = {{},{{}},{{},{{}}} Um conjunto contendo 3 conjuntos vazios.
  • 4 = 3 U {3} = {0,1,2,3} = {∅,{∅},{∅,{∅}},{∅,{∅},{∅,{∅}}}} = {{},{{}},{{},{{}}},{{},{{}},{{},{{}}}} Um conjunto contendo 4 conjuntos vazios.
  • n = n−1 U {n−1} = {0, 1, …, n−1} = {{ }, {{ }}, …, {{ }, {{ }}, …}}, etc.

A conexão entre o conjunto vazio e o zero é ampla: na definição teórica padrão dos números naturais, os conjuntos são usados para modelar os números naturais. Neste contexto, 0 (zero) é modelado pelo conjunto vazio.

Divisão, multiplicação, Zero e Vazio

  • 1⋅0^3 = 1⋅0⋅0⋅0 = 0
  • 1⋅0^2 = 1⋅0⋅0 = 0
  • 1⋅0^1 = 1⋅0 = 0
  • 1⋅0^0 = 1

Pela definição de subconjunto, o conjunto vazio é um subconjunto de qualquer conjunto A. Ou seja, todo elemento x de ∅ pertence a A. De fato, se não fosse verdade que todos os elementos de ∅ estão em A, haveria pelo menos um elemento de ∅ que não está presente em A. Como não há elementos de ∅ de maneira alguma, não há nenhum elemento de ∅ que não esteja em A. Qualquer declaração que comece “para todo elemento de ∅ não está fazendo nenhuma reivindicação substantiva; é uma verdade vazia. Isso é parafraseado frequentemente como “tudo se aplica aos elementos do conjunto vazio”.

Operações com o conjunto

Quando se fala da soma dos elementos de um conjunto finito, inevitavelmente se leva à convenção de que a soma dos elementos do conjunto vazio é zero. A razão para isso é que zero é o elemento de identidade para adição. Da mesma forma, o produto dos elementos do conjunto vazio deve ser considerado um, pois um é o elemento de identidade para multiplicação.

Soma Vazia

Na matemática a soma vazia é o resultado da adição de nenhum número, como em um somatório, por exemplo. Seu valor numérico é 0, o elemento neutro da adição. Este fato é especialmente útil na matemática discreta e na álgebra. Um caso simples, bastante conhecido é o caso em que:

0 × a = 0

isto é, a multiplicação de um número a qualquer por zero sempre é igual a zero, porque foram adicionadas zero cópias de a.

A soma vazia pode ser comparada com o produto vazio – a multiplicação de nenhum número – cujo valor não é zero, mas 1, o elemento neutro da multiplicação.

Por exemplo:

Soma {{1,2,3}} = Soma{{1,2}} + 3 = Soma {{1}} + 2 + 3 = Soma {{}} + 1 + 2 + 3 = 0 + 1 + 2 + 3

Em geral, define-se:

Soma {{}} = 0

e,

Produto vazio

Na matemática, um produto vazio ou produto nulo é o resultado da multiplicação de nenhum número. Seu valor numérico é 1, o elemento neutro da multiplicação, assim como o valor da soma vazia – o resultado da soma de nenhum número – é 0; isto é, o elemento neutro da adição. Este valor é necessário para a consistência da definição recursiva de um produto sobre uma sequência (ou conjunto, devido a propriedade comutativa da multiplicação).

Por exemplo:

Prod {{1,2,3}} = Prod{{1,2}} x 3 = Prod {{1}} x 2 x 3 = Prod {{}} x 1 x 2 x 3 = 1 x 1 x 2 x 3

Em geral, define-se:

Prod {{}} = 1

e,

Permutação Vazia

Em matemática, especialmente na álgebra abstrata e áreas relacionadas, uma permutação é uma bijeção, de um conjunto finito X nele mesmo. Em combinatória, o termo permutação tem um significado tradicional, que é usado para incluir listas ordenadas sem repetição, mas não exaustivas (portanto com menos elementos do que o máximo possível). O conceito de permutação expressa a ideia de que objetos distintos podem ser arranjados em inúmeras ordens diferentes.

Um desarranjo é uma permutação de um conjunto sem pontos fixos. O conjunto vazio pode ser considerado uma permutação de si mesmo, porque tem apenas uma permutação (0! = 1), e é vacuamente verdade que nenhum elemento (se pode encontrar no conjunto vazio) que mantém sua posição original.

Ex:

1! = 1, pois 1! = 1

0! = 1!/1 = 1

Leitura recomendada

Recomendo o livro ao lado: Medida, Integração e Real Análise, edição 27/02/2022 de Sheldon Axler, um excelente livro para a continuidade dos estudos em análise matemática. Ao ler o livro você se sentirá como Alice no País das Maravilhas da matemática. Ao clicar na capa do livro o Download começará. Compartilhe com todos seus amigos. Não há restrição de idade ou grau educacional. Saber ler em inglês é o suficiente para os estudos, boa leitura. {RC}.

Este livro é uma introdução à linguagem e aos métodos de prova padrão da matemática. É uma ponte dos cursos computacionais (como cálculo ou equações diferenciais) que os alunos normalmente encontram no primeiro ano de faculdade para uma perspectiva mais abstrata. Estabelece uma base para cursos mais teóricos: como topologia, análise e álgebra abstrata. Embora possa ser mais significativo para o aluno que tem algum cálculo, não há realmente nenhum (apenas saber ler em inglês) pré-requisito além da vontade de aprender matemática. Clique na capa e o download começará!{RC}.

Lembre-se, quando você afirmar: não há nada lá! O lá pode estar vazio { }. 😉

Referências Bibliográficas

O fim das crenças em inexistentes é inevitável

Símbolo lógico para inexistenteA humanidade vive uma fase de transição sem precedentes em nossa história, a evolução venceu a batalha contra as obscuridades e no presente momento estamos assistindo ao desmoronamento de ideologias, estados confessionais, religiões, seitas, , etc. Até mesmo a organização política da maioria dos países volta-se para a reconstrução de princípios e valores econômicos sociais.

O que são crenças em inexistentes?

 Símbolo matemático/lógico para inexistente

São coisas que partem do imaginário popular com raízes em gerações passadas, funcionam como um tipo de senso comum ou mimetismo, aceito por pessoas com pouca educação ou forçadas a aderir a determinado credo por tradições familiares, políticas ou culturais – mesmo que seu nível educacional seja elevado – sem o devido questionamento ou provas, tornando-se refém de valores e práticas que na maioria das vezes é cruel, arbitrário e principalmente retrógradoEx: terra plana, cura quântica, deus, deuses, ets, espíritos, fantasmas, divindades, infalibilidade, regimes políticos insustentáveis (os regimes da Síria e Venezuela, são exemplos típicos), etc.

E o que são existentes?

∃  Símbolo matemático/lógico para existente

A crença em existentes é o conhecimento verdadeiro/justificado e válido!

PCE = VÁLIDO ou 1

São coisas verificáveis ou definidas como tal: sejam matemáticas, espaciais, energéticas, físicas, locais ou não locais, materiais, etc.  Ex: buracos negros, radiação eletromagnéticas, átomos, moléculas, partículas elementares, partículas e ondas gravitacionais, vácuo quântico, espaço-tempo, subespaços, estados da matéria, cognição, redes neurais biológicas, cibernéticas e principalmente as IAs (inteligências artificiais), Sars-Cov-2 (O coronavírus).

Obs: Consulte aqui no blog sobre a origem do conhecimento? Com o conjunto ∅ como origem!

Qual a diferença entre Existente e Inexistente?

A lógica é imprescindível (necessária) neste caso, os existentes retornam algo válido/verificável e quando não existem, não podem retornar informações, são nulos. Ex: um estado de entrelaçamento quântico entre duas partículas elementares, ao deixarmos uma delas aqui na terra em algum laboratório e levarmos sua parceira ao espaço (na órbita da terra), qualquer alteração em uma será manifestada pela outra. Caso mudarmos o Spin (giro) da partícula em órbita, sua parceira em terra receberá essa mesma ação e mudará o giro (spin) e vice-versa. E, mesmo que não saibamos como a comunicação ocorre, essa fenomenologia é expressiva, válida e detectável. Em 2016 cientistas chineses provaram via experimento o teletransporte quântico pela primeira vez. Segue comentários do experimento de teletransporte quântico: “Quantum teleportation across a metropolitan fibre network – Pdf

Crer em divindades é crer em inexistentes – saiba a razão!

A crença em inexistentes não é conhecimento, é inválida ou nula.

Digamos que você acredita em “Deus”, isso te obriga a aceitar como verdade o pacote: afirmações, proposições, induções; em coisas inválidas e sem sentido, fruto de tradições antepassadas, mesmo na impossibilidade em determinar a existência dessa entidade, se não pudermos determinar a existência, o produto da crença torna-se nulo: a divindade em questão jamais atenderá qualquer pedido, prece, devoção, etc. Sic: https://rcristo.com.br/2017/03/15/como-atingir-a-razao-esclarecida-sobre-nossas-crencas-valores-e-interpretacoes-da-realidade/

O produto ou contrapartida da crença em inexistentes: PCI = Nulo!

{RC}

Fique atento: a intenção pode ser boa mas o resultado é péssimo, você não poderá fugir das leis da física, não importa em que acredite! Acreditar em deus (ou divindades e derivados) terá o mesmo efeito da compra de um belo Smartphone pela internet e quando a caixa chegou estava vazia, imagine a frustração!? Caso alguém tenha caído nessa pegadinha, foi: acreditado, confiado, seduzido por ofertas (promessas, rótulos simbolizando o aparelho) de um vendedor/site espertinho, na certeza de ganhar seu sofrido dinheirinho, em razão da crença na foto ou valor irreal de algo que não existe.

Consequências devastadoras da crença em inexistentes

No geral as pessoas não imaginam que uma simples atitude possa significar vida/morte ou decepção, dependendo da profundidade da crença adquirida: segue alguns exemplos:

  • Coronavírus – está dizimando as populações humanas, é imune às crenças, fé, deus, etc. Quem acredita que ir a um templo poderá ficar salvo, saiba que é uma péssima atitude. A razão é bem simples: o coronavírus existe (podemos vê-lo ao microscópio eletrônico); entretanto, a sua fé não poderá fazer nada contra ele. A fé é um vazio que irá te levar a um local onde o vírus estará e poderá infectar você. As consequências podem ser fatais.
  • Terra Plana – é uma das crenças mais absurdas, sendo contrária às próprias leis da física (é contra intuitivo), mas no Brasil em 2019, uma pesquisa entrevistou 2.086 pessoas (de 16 anos ou mais) em 103 cidades do País. Entre elas, 90% afirmaram que a Terra é redonda. Ou seja, o número de pessoas que apoiam o fato científico do planeta ser uma esfera é grande, mas o número de terraplanistas vêm crescendo. Principalmente entre os mais jovens, menos escolarizados e cristãos. O levantamento aponta que a ideia do terraplanismo é apoiada por 7% dos brasileiros com menos de 25 anos. A porcentagem cai para 4% na faixa etária entre 35 e 44 anos. O valor em números passa de 11 milhões de pessoas que afirmam que nosso planeta é plano. Fonte: https://www.huffpostbrasil.com
  • Proibição da doação de sangue – muitas seitas e religiões proíbem seus membros/seguidores/fiéis doarem ou receberem sangue de terceiros, isso é devastador para a pessoa que sofre um acidente, está numa UTI e precisa da doação, pode falecer por ignorâncias desses grupos ou dos próprios familiares.
  • Proibir as crianças de receber às vacinas (obrigatórias) – mais uma atitude ilegal e colocará em risco os jovens e adultos. Ex: sarampo retorna ao Brasil após ser erradicado em 2016 – de fevereiro de 2018 a janeiro de 2019, foram registrados 10.274 casos de sarampo no Brasil, sendo 9.778 apenas no estado do Amazonas, com 6 mortes confirmadas, e outros 355 casos em Roraima, com 4 mortes registradas. Outros registros isolados apareceram no Pará (61), Rio Grande do Sul (45), Rio de Janeiro (19), Sergipe (4), Pernambuco (4) e outros números inferiores de casos.
  • Ignorar as responsabilidades perante a sociedade ou comunidade – as pessoas não assumem a responsabilidade por seus atos e delegam os erros cometidos aos pecados (inventados ou amparados), tentando se redimir por meio da crença, isso é um absurdo e deveria ser banido de nossa sociedade e até mesmo da constituição.
  • Fazer agradecimento aos inexistentes sempre que algo bom é realizado – agradecer a Deus por ter se salvado de um acidente, pela conquista de um prêmio ou por ter se curado de uma doença é o mesmo que tirar os créditos daqueles que sãos os responsáveis diretos/indiretos por essas conquistas: a evolução e natureza pelo fato de você estar vivo, aos pais/familiares/amigos/professores/profissionais; em razão de terem sido seus tutores, auxiliado em sua recuperação, se esforçado pelo seu progresso. Li diversas teses cujos alunos agradecem a inexistentes em lugar de dar os devidos créditos a quem realmente merece. Isso é resultado da precariedade de nosso sistema educacional, uma pergunta que precisamos fazer aos examinadores de TCCs (trabalhos de conclusão de cursos): por que deixaram isso acontecer?
  • STF decide que sacrifício de animais em cultos religiosos é constitucional, sic: https://www.correiobraziliense.com.br/app/noticia/brasil/2019/03/29/interna-brasil,746078/stf-decide-sacrificio-de-animais-em-cultos-religiosos-constitucional.shtml
  • Obs: fazer leis para apoiar práticas religiosas retrógradas é típico do profundo atraso vivenciado em nosso país. O STF apoia a ignorância como lei. Lamentável.

Outra certeza inegável é a morte, não importa no que acreditamos: nosso corpo irá para o túmulo ou crematório; portanto, vamos desaparecer (deixar de existir) da forma como nascemos no universo atual. Quanto a isso não há a menor dúvida; não existe céu ou inferno, somente existências, pense nisso e viva a vida o máximo que puder.

A prova mais contundente de que os sistemas de crenças (sem ciência) acabaram pode ser verificado na pandemia de coronavírus.

Reinaldo Cristo {RC}.

Fontes: Arxiv.org, Wikipedia, Technologyreview, Huffpostbrasil, Correiobrazilience

Niilismo otimista – Troque valores duvidosos por reais e viva melhor – Ótimo 2018!

Se você tem dúvidas sobre as questões: o que é vida, qual a origem dos cosmos, existe vida após a morte, o que é consciência, algum dia teremos políticos honestos (rsrsrs), etc. Não se preocupe, procure a resposta na ciência, vá a fundo em temas complexos e poderá fazer um comparativo do ensinamento recebido no decorrer da vida e notará falhas interpretativas, causadas principalmente pela educação insuficiente – ou falta dela – de nossos pais, avós, professores, educadores, cultura, faculdades, universidades, grupos de estudo, seitas, religiões,  etc. Cada um afirmou e passou um pedacinho de suas crenças, valores e noções a respeito do mundo ao nosso redor e das coisas que estão fora da nossa compreensão.

A interpretação errônea sobre a realidade (vieses) causou desajustes na humanidade e demorará décadas ou séculos para que seja corrigida e dissipada. O Brasil é um caso típico, cuja população em sua maioria ainda acredita em coisas que não existem – uma constante no imaginário coletivo e cultural -, contrárias às descobertas científicas (claras e objetivas), que circulam na internet e vimos estampados a todo momento nos meios de comunicação em massa (rádio, tv, shows, etc).

Não importa no que você acredite hoje, coloque à prova o que aprendeu, nunca parece de estudar, procure compreender os avanços recentes em Inteligência Artificial, robótica, tecnologias, criptomoedas; sua mente ganhará mais afinidade com assuntos, até então, difíceis de imaginar ou conceber. Ex: tente calcular quantos átomos há em um grão de areia?

Ótimo 2018! Novas perspectivas e muita vontade de aprender.

Crédito vídeo: Kurzgesagt – In a Nutshell