Conceitos básicos em matemática (noção de primitivas)

Na foto da Big Lousa (grande quadro em sala de aula), podemos perceber a matemática expressada em toda a sua magnitude. Créditos foto (internet).

O que é Matemática?

É a ciência do raciocínio lógico e abstrato, que estuda quantidades, medidas, espaços, estruturas, variações e estatísticas. Também é a ciência mais importante em razão de ser a fundamentação do conhecimento. Toda base tecnológica é fundamentada em matemática, caso sua aprendizagem seja deficitária ficaria muito difícil avançar na aquisição de conhecimento, compreendendo todas as áreas estudadas.

Conceitos básicos

A matemática não existe na natureza, é uma tremenda invenção do pensamento, um produto da cultura que foi amplamente inspirado pela natureza, especialmente durante a gestação da matemática na Suméria. Em contraste com a realidade e em contraste com os fenômenos naturais, a matemática é puramente conceitual. Certos objetos da natureza e certos fenômenos naturais, como o horizonte, favos de mel hexagonais, ritmos naturais, objetos em número ou ondas na superfície da água, podem sugerir que a matemática existe na natureza. De fato, esses objetos e esses fenômenos, chamados de naturais, são irregulares, imperfeitos e não devem ser confundidos com objetos matemáticos perfeitos e que obedecem às leis estritas: a matemática simplifica construindo conjuntos de objetos matemáticos, os quais têm as mesmas propriedades. (1)

Realidade e natureza

Por exemplo, a matemática defende que todos os indivíduos, que fazem parte de uma população de bactérias, são semelhantes; enquanto cada bactéria está em sua condição adequada, a qual difere da seguinte (condição fisiológica, interação com seu ambiente próximo, possível interdependência); mas sem essas simplificações da realidade, o estudo de bactérias seria impossível e o Universo seria ininteligível para nós. (1)

Este é um restabelecimento do antigo princípio latino Pars Pro Toto (verdadeiro para a parte significa verdadeiro para o todo). No entanto, o princípio do PPT é verdadeiro em matemática: em um conjunto matemático, todos os elementos são isomórficos (idênticos) e isonômicos (obedecem às mesmas leis), a menos que o conjunto seja particionado de alguma maneira. (1)

Por não existir na natureza, a matemática tem uma integridade interessante: ao contrário da política, economia, arte e filosofia, não há matemática de esquerda ou de direita; não há matemática aliada ao marxismo, nem fiel a nenhuma religião em particular; e também não favorece nenhuma cultura, espécies ou espécie em particular. Por sua própria essência, a matemática proíbe pontos de vista ideológicos, atitudes intelectuais, preconceitos ou convicções predeterminadas. Em sua aparente frieza, a matemática é vertical, mas não neutra, porque fica na linha de frente na luta contra o analfabetismo (sem conhecimento mínimo) e o obscurantismo (crença em inexistentes), na medida em que é uma maneira verdadeiramente excepcional de entender e inventar coisas. (1)

A origem da matemática

Algumas formas matemáticas muito básicas emergem no início do neolítico, AEC 7000 anos atrás; suas origens, em várias culturas, são diversas, poligênicas. No Curdistão iraquiano, estratos arqueológicos desse período retornaram pequenas cerâmicas esféricas, cilíndricas ou cônicas, chamadas de cálculos, destinadas a manter contas. Os cálculos parecem ser os arquivos contábeis mais antigos. Assim, eles deram origem a um sistema com um futuro promissor: administração. Deveria ser visto como um passo em direção à abstração, porque os cálculos já eram representações quantificadas e codificadas. No início da era neolítica, com esse modelo aritmético pequeno e elementar representado pelos cálculos, nossos ancestrais inventaram um dos primeiros modelos matemáticos. Seixos pintados, encontrados em Mas-d’Azil em Ariège (França, 9000 AEC), são interpretados como auxiliares de memória e provável precursor de cálculos. (1)

Artefatos matemáticos

A ideia aqui é combinar matemática e natureza, a fim de avaliar algum aspecto deste último, usando conceitos e modelos matemáticos. Nota importante: os artefatos matemáticos representam a realidade, mas não são a realidade: essa é precisamente a diferença entre realidade e artefatos matemáticos. (1)

Elementos primitivos

Em matemática, lógica, e sistemas formais, uma noção primitiva é um conceito indefinido. Em particular, a noção primitiva não é definida em termos de conceitos previamente definidos, é apenas motivada informalmente, geralmente por um apelo à intuição e a experiência cotidiana. Em um sistema axiomático ou outro sistema formal, o papel de uma noção primitiva é análoga ao de um axioma; portanto, é muito importante! Teorias formais não podem prescindir (vir sem ou ignorar) noções primitivas, sob pena de regresso ao infinito (circularidade).

Um ponto é aquilo que não tem partes.

Euclides: Os Elementos, Livro I.

Neste livro, o conceito de “ponto” não é primitivo, pois é definido por meio do conceito de “parte” que é primitivo, não recebe definição.
Um conceito pode ser primitivo em um contexto mas não em outro. Como exemplo, em psicologia, as cores geralmente são conceitos primitivos, pois o significado das cores provém unicamente do sentido da visão (e portanto a única maneira de ensinar o que significa precisamente a palavra azul, é mostrando algo dessa cor), mas no contexto da física, elas têm definições em termos de comprimentos de ondas eletromagnéticas.

Clique na foto ao lado para baixar o Livro em PDF. Créditos Unesp: archive.org

Conceitos primitivos formam a base representativa da matemática, são eles:

Espaço e subespaço

Espaços são possibilidades existenciais seja no sentido: físico, matemático, conceitual ou filosófico, representativo, etc. Todo espaço contém subespaços em seu interior. Nada pode existir fora de um espaço e a nossa capacidade de conhecer depende de um espaço que começa vazio. Em física o espaço não vem sozinho, é mesclado com o tempo para formar o espaço-tempo. {RC}.

Foi nossa capacidade cognitiva que ao inventar a ciência matemática nos proporcionou essa maravilhosa concepção. (consulte BEM-FUNDADO).

{RC}.

Obs: as leis/regras/lógicas/abstrações da matemática foram inventadas por nós no decorrer de milênios da evolução de nosso raciocínio, enquanto as leis da física foram descobertas. Um exemplo é o número Zero = 0, inventado há mais ou menos 2600 anos.

Espaços também podem ser:

Representação

Na teoria dos conjuntos representamos os espaços da seguinte forma:

{ espaço aberto

} espaço fechado

{ } espaço vazio ou ∅

{ { } } um espaço com subespaço interior

{∅} espaço vazio topológico

Ponto

Em Matemática, particularmente na Geometria e na Topologia, um ponto {.} é uma noção primitiva pela qual outros conceitos são definidos. Um ponto determina uma posição no espaço. Na Geometria, pontos não possuem volume, área, comprimento ou qualquer dimensão semelhante. Assim, um ponto é um objeto de dimensão 0 (zero). Um ponto também pode ser definido como uma esfera de diâmetro zero.

Geometria euclidiana

Nos Elementos de Euclides, um ponto é definido como “o que não tem partes”. Isto significa: o que caracteriza um ponto é a sua posição no espaço. Com o aparecimento da geometria analítica, passou a ser possível referir-se a essa posição através de coordenadas.

Geometria projetiva

Na geometria projetiva, um ponto é um elemento de um espaço projetivo, ou seja, é uma reta.

Topologia

Em topologia, um espaço topológico é um conjunto de pontos, aos quais está associada uma noção de proximidade. No entanto, existe uma abordagem recente da topologia, chamada a topologia sem pontos, que estuda os espaços topológicos sem se referir aos pontos que os constituem. Esta abordagem enquadra-se na teoria das categorias.

Reta

A linha reta é aquela que se estende igualmente entre seus pontos, podemos afirmar que é uma medida (distância) entre pontos.

As retas vermelha e azul neste gráfico têm o mesmo declive; as retas vermelha e verde têm a mesma interceptação em y (cruza o eixo y no mesmo local).

Curva

Uma espiral, um exemplo simples de curva.

Tecnicamente, uma curva é o lugar geométrico ou trajetória seguida  por um ponto que se move de acordo com uma ou mais leis especificadas, neste caso, as leis comporão uma condição necessária e suficiente para a  existência do objeto definido. Frequentemente há maior interesse nas  curvas em um espaço euclidiano de duas dimensões (curvas planas) ou três dimensões (curvas espaciais). Em tópicos diferentes dentro da matemática o termo possui  significados distintos dependendo da área de estudo, então o sentido  exato depende do contexto. Um exemplo simples de uma curva é a espiral,  mostrada acima à esquerda. Um grande número de outras curvas já foi bem estudado em diversos campos da matemática.

Plano (geometria)

Um plano é um ente primitivo geométrico infinito à duas dimensões. Nos Elementos de Euclides, não possui definição enquanto conceito genérico. Mas um plano qualquer é definido, ou determinado, de várias formas equivalentes. Na foto ao lado vemos três planos paralelos.

Acima da esquerda para a direita: o quadrado, o cubo e o tesserato. O quadrado bidimensional (2d) é delimitado por linhas unidimensionais (1d); o cubo tridimensional (3d) por áreas bidimensionais; e o tesserato quadridimensional (4d) por volumes tridimensionais. Para exibição em uma superfície bidimensional, como uma tela, o cubo 3D e o tesserato 4d exigem projeção.

Dimensão

Na física e na matemática, a dimensão de um espaço matemático (ou objeto) é informalmente definida como o número mínimo de coordenadas necessárias para especificar qualquer ponto dentro dela. Assim, uma reta  tem uma dimensão de um (1) porque apenas uma coordenada é necessária  para especificar um ponto nela – por exemplo, o ponto no 5 em uma reta  numérica. Uma superfície como um plano ou a superfície de um cilindro ou esfera tem uma dimensão de dois porque duas coordenadas são necessárias para especificar um ponto nela – por exemplo, uma latitude e uma longitude são necessárias para localizar um ponto na superfície de uma esfera. O interior de um cubo, um cilindro ou uma esfera é tridimensional porque são necessárias três coordenadas para localizar um ponto dentro desses espaços.

As primeiras quatro dimensões espaciais, representadas em uma figura bidimensional.
  1. Dois pontos podem ser conectados para criar um segmento de reta.
  2. Dois segmentos de linha paralela podem ser conectados para formar um quadrado.
  3. Dois quadrados paralelos podem ser conectados para formar um cubo.
  4. Dois cubos paralelos podem ser conectados para formar um tesserato.

Na mecânica clássica, espaço e tempo  são categorias diferentes e referem-se a espaço e tempo absolutos (conceitos superados pela física da relatividade e pela mecânica quântica). Essa concepção de mundo é um espaço de quatro dimensões, mas não o que foi  considerado necessário para descrever o eletromagnetismo. As quatro dimensões do espaço-tempo consistem em eventos que não são absolutamente definidos espacial e temporalmente, mas são conhecidos em relação ao movimento de um observador. O espaço de Minkowski primeiro se aproxima do universo sem gravidade; as variedades pseudo-riemannianas da relatividade geral descrevem o espaço-tempo com a matéria e a gravidade. Dez dimensões são usadas para descrever a teoria das cordas, onze dimensões podem descrever a supergravidade e a teoria-M, e o espaço de estados da mecânica quântica é um espaço de função de dimensão infinita. O conceito de dimensão não se restringe a objetos físicos. Espaços de alta dimensão frequentemente ocorrem na matemática e nas ciências. Eles podem ser espaços de parâmetros ou espaços de configuração, como na mecânica lagrangiana ou hamiltoniana; estes são espaços abstratos, independentes do espaço físico em que vivemos.

Um sistema de coordenadas cartesianas de três dimensões.

Obs: É importante observar que a dimensão está vinculada à forma como o espaço se apresenta.

Tesserato e Hipercubo

Um tesserato (ou tesseracto), octácoro regular ou hipercubo de quatro dimensões é um polícoro (polítopo de quatro dimensões) regular, é o polícoro dual do Hexadecácoro e é análogo ao cubo (que é um poliedro, um polítopo de três dimensões) e ao quadrado (que é um polígono, um polítopo de duas dimensões). Um octácoro apresenta vértices (pontos), arestas (linhas), faces (planos) e células (sólidos).

Para representarmos geometricamente um hipercubo de quarta dimensão, devemos fazer uso da analogia: para formarmos um quadrado, unimos dois segmentos de reta paralelos e de mesmo comprimento através de seus extremos por outros dois outros segmentos de reta. Para representarmos um cubo, unimos os vértices de dois quadrados por quatro segmentos de reta. Para representarmos um hipercubo, unimos todos os vértices de dois cubos por segmentos de reta, conforme sugere a imagem ao lado.

O Tesserato é um cubo projetado em 4 dimensões.

O tesserato é um análogo ao quadrado e ao cubo, mas com quatro dimensões. Para entendermos a quarta dimensão, é necessário relembrarmos rapidamente alguns conceitos de geometria. O primeiro conceito é o ponto. Um ponto é a representação geométrica de posição no espaço, e não possui dimensões (nem altura, nem comprimento, nem profundidade); ou seja, é impossível “medir” um ponto. Um ponto que se move em uma direção gera um segmento de reta. Uma linha que se desloca produz ou uma linha mais longa, ou uma área, se ela se move em direção perpendicular à sua direção anterior, ela gera um retângulo; e, se a distância for a mesma que, a que o ponto se deslocou, um quadrado. Um quadrado, movendo-se nesta mesma distância em uma direção perpendicular, gera um cubo. Para mover o cubo, não podemos visualizar em que direção ele se moveria, assim como uma terceira dimensão seria invisível a habitantes presos à superfície de uma mesa, mas supondo-se que existisse uma direção perpendicular às três dimensões, e que o cubo se deslocasse nesta dimensão da mesma distância padrão, a figura gerada seria um tessarato.

Bijeção e função bijetiva

Uma função bijetiva, função bijetora, correspondência biunívoca ou bijeção, é uma função injetiva e sobrejetiva (injetora e sobrejetora).

Uma função bijetiva injetiva e sobrejetiva ao mesmo tempo).

Função injetiva, mas não sobrejetiva (portanto não é bijetiva).

Função sobrejetiva, mas não injetiva (portanto não é bijetiva).

Função nem injetiva nem sobrejetiva (portanto não é bijetiva).

Cardinalidade

Na matemática, a cardinalidade de um conjunto é uma medida do “número de elementos do conjunto”. Por exemplo, o conjunto A={2,4,6,8,10} contém 5 elementos e por isso possui cardinalidade 5. Existem duas abordagens para cardinalidade – uma que compara conjuntos diretamente, usando funções bijetoras e funções injetoras, e outra que usa números cardinais.

Obs: A cardinalidade de um conjunto A é usualmente denotada |A|, com uma barra vertical de cada lado; trata-se da mesma notação usada para valor absoluto, por isso o significado depende do contexto.

Comparação de conjuntos

Caso 1: |A|=|B|

Dois conjuntos A e B possuem a mesma cardinalidade se existe uma bijeção, ou seja, uma função que seja simultaneamente injetora e sobrejetora, entre eles. Por exemplo, o conjunto E={0, 2, 4, 6, …} dos números pares não-negativos tem a mesma cardinalidade do conjunto N={0, 1, 2, 3, …} dos números naturais, uma vez que a função f(n)=2n é uma bijeção de N para E.

Caso 2: |A|≥|B|

|A|tem cardinalidade maior ou igual que a cardinalidade de B se existe uma função injetora de A para B.

Caso 3: |A|>|B|

|A| tem cardinalidade estritamente maior do que a cardinalidade de B se existe uma função injetora de A para B, mas não existe nenhuma função bijetora de B para A.

Obs: Em teoria dos conjuntos, dois conjuntos são equipotentes se possuem a mesma cardinalidade; ou seja, se há uma bijeção entre os conjuntos.

Dedekind-infinito

Na matemática, especialmente na teoria de conjuntos, um conjunto A é Dedekind-infinito ou infinito de Dedekind se A é equipotente a um subconjunto próprio. Um conjunto é Dedekind-finito se ele não é Dedekind-infinito. O nome provém do matemático alemão Richard Dedekind, que definiu “infinito” dessa maneira no seu famoso artigo de 1888, o que são e o que precisam ser os números.

Infinito

Infinito (do latim infinítu, símbolo: ∞) é a qualidade daquilo que não tem fim. O símbolo de infinito ∞ é por vezes chamado de lemniscata, do latim lemniscus. John Wallis é creditado pela introdução do símbolo em 1655 no seu De sectionibus conicis. Uma conjectura sobre o porquê ter escolhido este símbolo é ele derivar de um numeral romano para 1000 que, por sua vez foi derivado do numeral etrusco para 1000, que se assemelhava a CIƆ e era por vezes usado para significar “muitos”. Outra conjectura é que ele deriva da letra grega ω – Omega – a última letra do alfabeto grego. Também, antes de máquinas de composição serem inventadas, ∞ era facilmente impresso em tipografia usando o algarismo 8 deitado sobre o seu lado.

Referências Bibliográficas

Cartilha de Finanças Pessoais: Baixe o Livro

Clique na foto para download direito em Pdf.

Esta Cartilha de Finanças Pessoais ensina os princípios básicos de leitura nessa área de conhecimento, é uma compilação elementar de Educação Financeira. Seu objetivo é servir como um guia didático no planejamento da vida financeira de seus leitores.

Blog Cidadania & Cultura

Com a edição revista e ampliada desta Cartilha de Finanças Pessoais – 2019 completei dezoito livros organizados no período desfrutado de Licenças-Prêmio e férias acumuladas. Você os encontrará para download gratuito na aba acima denominada Obras (Quase) Completas.

Ver o post original 158 mais palavras

CARL SAGAN – LIVROS GRATUITOS EM PDF

Ao todo Carl Sagan escreveu mais de 600 publicações científicas, também foi autor de mais de 20 livros de ciência e ficção científica, selecionamos os melhores que estão disponíveis em pdf. Sem dúvida foi um grande divulgador da ciência moderna: astrônomo, astrofísico, cosmólogo; escritor e divulgador científico norte-americano de destaque mundial. É amplamente conhecido por seus livros de ciência e pela premiada série televisiva de 1980 Cosmos: Uma Viagem Pessoal, narrada e coescrita por ele. Posteriormente o livro Cosmos foi publicado para complementar a série.


Carl Edward Sagan – 1934-1996

Além do sucesso mundial do clássico “O mundo Assombrado pelos Demônios”, outro livro de destaque é o Romance Contato, serviu de base para um filme homônimo de 1997. Em 1978, Sagan ganhou o Prêmio Pulitzer de Não Ficção geral pelo seu livro Os Dragões do Éden. Morreu aos 62 anos de pneumonia, depois de uma batalha de dois anos com uma rara e grave doença na medula óssea (mielodisplasia).

Confira abaixo os links para baixar em pdf/Epub, clicando neles para leitura direta em: PCs, Macs, Smartphones, Tabletes, iPhones.

Livros de Carl Sagan para download

  1. Contato: Download
  2. Cosmos: Download
  3. O Mundo Assombrado pelos Demônios: Download
  4. Um Pálido Ponto Azul: Download
  5. Variedades da Experiência Científica: Download

Créditos: nerdking.net.br, archive.org

Pense com clareza – Lógica e simbologia matemática – Ebooks inclusos

Pensar com clareza não é fácil, a dificuldade principal reside em nossos vieses cognitivos pré-carregados com informações inválidas ou pouco compreendidas a respeito de qualquer assunto. Ex: Deus existe? A resposta não pode vir das religiões e muito menos de seus representantes (há pouca clareza em suas afirmações) então recorremos à cosmologia, física e ciências para darmo-nos a resposta correta: é uma indeterminação que em última análise pode ser resolvida com a anulação lógica da questão via aplicação da fórmula que desenvolvi para limpar nossas redes neurais: {Deus=Null}.

 
Quando tomamos contato com algum assunto a primeira impressão consiste na utilização do viés cognitivo, uma interpretação que podemos chamar hermenêutica ou senso comum, ao aprimorarmos o foco e conhecimento sobre determinado tema com a utilização de técnicas precisas e melhor elaboradas via aplicação de métodos analíticos: classificação, qualificação e disposição de dados; podemos chamar episteme.
 
Fiz uma compilação de dados que considero pertinentes aos temas postados e analisados neste blog, o primeiro passo é aprender a reconhecer e posteriormente usar a simbologia lógica e matemática ampla e complexa; segue a lista dos principais símbolos matemáticos e lógicos comumente usados nos assuntos epistemológicos.
 
Símbolos matemáticos
 
SímboloSignificadoSímboloSignificado
Conjunto de números Naturais𝛼− ΑAlfa
Conjunto de números Inteiros𝛽− ΒBeta
Conjunto de números Racionais𝛾− ΓGama
Conjunto de números Reais𝛿− ΔDelta
Conjunto de números Complexos𝜀−ΕÉpsilon
União de Conjuntos𝜁− ΖZeta
Intersecção de Conjuntos𝜂− ΗEta
Está contido𝜃− ΘTeta
Está contido ou É igual a𝜄− ΙIota
Não está contido𝜅− ΚCapa
Contém𝜆− ΛLambda
Contém ou É igual a𝜇− ΜMu
Não contém𝜈− ΝNi
Diferença de Conjuntos𝜉− ΞCsi
Pertence𝜊− ΟÓmicron
Não Pertence𝜋− ΠPi
[𝑎,𝑏]Intervalo Fechado𝜌− Ρ
]𝑎,𝑏[Intervalo Aberto𝜎− ΣSigma
{𝑎,𝑏,𝑐}Conjunto de Elementos𝜏− ΤTau
∅ ou { }Conjunto Vazio𝜐− ΥÍpsilon
+Adição𝜑− ΦFi
Subtração𝜒− ΧQui
÷Divisão𝜓− ΨPsi
×Multiplicação𝜔− ΩÓmega
±Mais ou Menos
<Menor queÂngulo
Menor ou igual queAmplitude
>Maior que°Grau
Maior ou igual queMinuto
Equivalente’’Segundo
Implica quePerpendicular a
=Igual aParalelo a
Diferente dem.d.c.Máximo Divisor Comum
Aproximadamente Igualm.m.c.Mínimo Múltiplo Comum
Idêntico asin()Seno
ΣSomatóriocos()Cosseno
ΠProdutotan()Tangente
Integralcot()Cotangente
Gradiente𝑣⃗Vetor
E (operador lógico)‖𝑣⃗‖Norma
Ou (operador lógico)|𝑥|Valor Absoluto (módulo)
Existelog𝑎()Logaritmo de base a
Não Existeln()Logaritmo Natural (de base e)
Para Todolog()Logaritmo Decimal (de base 10)
~Negação𝑓(𝑥)Função
¬Negação𝑓′(𝑥)Função Derivada (primeira derivada)
:Tal Que𝐷𝑓Domínio
Então𝐷′𝑓Contradomínio
Porque𝑓−1Função Inversa
c.q.d.Como Queríamos Demonstrar𝑓∘𝑔Função Composta (f após g)
Infinitolim ()Limite
Raiz Quadrada𝑥→𝑎x Tende para a
Raiz Cúbica𝜋Pi, 𝜋=3,14159265359…
!Fatorial𝑒Constante de Euler, 𝑒=2,7182…
%PercentagemΦNúmero de Ouro, Φ=1,6180…
Permilagem  (x 1000)𝑖Unidade Imaginária, 𝑖2=−1
Grau Fahrenheit𝑅𝑒(z)Parte Real de um Complexo
Grau Celcius𝐼𝑚(z)Parte Imaginária de um complexo
NullNulo Baixe este gabarito em => PDF

Como adquirimos conhecimento?

Por intermédio de duas situações

A priori: o conhecimento que não depende da experiência – em tese! Ex: 5 + 5 = 10, uma ideia, espaço e tempo, etc.

 
A posteriori: o conhecimento que depende da experiência – empírico! Ex: ao perguntar para alguém o que há dentro da caixa sobre a mesa, há duas respostas que dependem da experiência para que seja possível chegar a esse conhecimento: se a caixa for transparente, o sentido da visão será suficiente para essa conclusão, se a caixa não for transparente, é necessário abri-la para saber o que há dentro.
 
No entendimento de Kant: “no tempo, pois, nenhum conhecimento precede a experiência, todos começam por ela.” demonstrando que todo conhecimento inicia com a experiência, porém não é porque iniciou com a experiência que dela deva depender; “consideraremos, portanto, conhecimento “a priori”, todo aquele que seja adquirido independentemente de qualquer experiência. A ele se opõem os opostos aos empíricos, isto é, àqueles que só o são “a posteriori” – quer dizer – por meio da experiência.”
 
Desta forma o conhecimento “a priori” faz parte da razão pura, é universal e necessário, por exemplo: o triângulo possui três lados.” Esta frase nos faz entender que em qualquer lugar do universo e sob quaisquer circunstâncias o triângulo possui três lados, assim como: todo corpo possui massa; ou seja, são casos universais e necessários, sendo o que são em qualquer lugar.
 
Já o conhecimento “a posteriori” é contingente (pode ou não pode ser), pois depende do fenômeno empírico para ser o que é, dependente da experiência e dela é originado, enquanto o conhecimento “a priori” é originado na experiência, mas não dependente dela.
 
Lembrando que os conhecimentos: “a priori” e “a posteriori” servem apenas para conhecimento das coisas que estão no âmbito da física e não metafísica, e ainda que não possamos conhecer as coisas como são em si, mas apenas como aparecem a nós.
 
Conclusão: jamais conheceremos o cosmos diretamente como realmente é, obteremos apenas versões aproximadas da realidade física. {RC}
 
Ebooks necessários para o aprimoramento do estudo da matemática básica e lógica
 
Universidade de Latvia
Introduction to Mathematical Logic
Hyper-textbook for students
by Vilnis Detlovs, Dr. math.,
and Karlis Podnieks, Dr. math.
Institution: University of Latvia
Department: Faculty of Computing, Institute of Mathematics and Computer Science. Obs: clique na imagem para acesso direto ao Ebook em Pdf.

Assuntos importantes que são tratados neste Ebook

WARNING!ATENÇÃO!
In this book, predicate language is used as a synonym of first order language formal theory.Neste livro, linguagem predicada é usada como sinônimo de linguagem de primeira ordem.
Formal theoryTeoria formal
As a synonym of formal system, deductive system.Como sinônimo de sistema formal, sistema dedutivo.
Constructive logicLógica Construtiva
As a synonym of intuitionistic logic.Como sinônimo de lógica intuicionista.
Algorithmically solvableSolvável por meio de algoritmos
As a synonym of recursively solvable.Como sinônimo de recursivamente solvável.
Algorithmically enumerableEnumerável por meio de algoritmos
As a synonym of recursively enumerable.Como sinônimo de numerável recursivamente.
Universidade de Latvia
What is Mathematics Gödel’s Theorem and Around
Hyper-textbook for students
by Karlis Podnieks, Professor
Obs: clique na imagem para acesso direto ao Ebook em Pdf.

Para saber mais consulte: Qual a origem do conhecimento? – Neste Blog. {RC}.

Fonte Ebooks: Universidade Latvia
Créditos: Karlis Podnieks Oficina Kantiana

The Future of Humanity (O futuro da Humanidade) – Com Yuval Noah Harari

Obs: caso a legenda em português não apareça, clique no ícone legenda na área inferior do vídeo para ativá-la, em seguida clique na engrenagem: escolha a opção Legendas e Português(Brasil).

Ao longo da história houve muitas revoluções: na tecnologia, economia, sociedade, política. Mas uma coisa sempre permaneceu constante: a própria humanidade. Ainda temos os mesmos corpos, cérebros e as mesmas mentes que nossos antepassados na China antiga ou na Idade da Pedra. Nossas ferramentas e instituições são muito diferentes das do tempo de Confúcio, mas as estruturas profundas do corpo humano e da mente permanecem as mesmas. No entanto, a próxima grande revolução da história mudará isso. No século XXI, haverá constantes inovações na tecnologia, economia, política. Mas, pela primeira vez na história, a própria humanidade também sofrerá uma revolução radical, não somente em nossa sociedade e economia, mas nossos corpos e mentes serão transformados por novas tecnologias como engenharia genética, nanotecnologia, realidade virtual, realidade expandida e interfaces cérebro-computador. Yuval Noah Harari tem um doutorado em História pela Universidade de Oxford e agora leciona no Departamento de História na Universidade Hebraica em Jerusalém, especializada em História Mundial. Autor do livro Sapiens: Uma Breve História da Humanidade, publicada em 2014, ficou na lista de best-sellers do Sunday Times por mais de seis meses em brochura, foi um dos mais vendidos do New York Times e publicado em quase 40 idiomas no planeta.

Comentários sobre o autor e seus livros no Blog: Fernando Nogueira Costa.

Fontes: The Royal Institution

Transcendent Man (O homem transcendente) – Ray Kurzweil – Documentário Completo

Raymond Kurzweil, mais conhecido como Ray, é um inventor e cientista dos Estados Unidos. Em 1968, ainda estudante do MIT, Kurzweil fundou uma empresa que usava um programa de computador para combinar estudantes de ensino médio com universidades. Ele comparava milhares de critérios sobre cada instituição de ensino com respostas de questionários respondidos pelo próprio estudante. Aos vinte anos, vendeu sua empresa para a Harcourt, Brace & World por cem mil dólares mais royalties. Raymond recebeu BS em ciência da computação e literatura em 1970.

Ray, tem planos ousados de viver para sempre e segue uma dieta radical tomando 200 comprimidos com suplementos alimentares todos os dias. Atualmente sua principal atividade é reuniões, palestras e pesquisas sobre o momento onde atingiremos a singularidade em nosso avanço tecnológico.

Segue e-books recomendados

The Age of Spiritual MachinesThe Singularity Is NearTranscendHow to Create a Mind

Obs: leitor de Epub Mac/PC- Adobe Digital Editions

No dispositivo móvel recomendo: Bookari Free Epub PDF Leitor

Créditos: Consciência Universal

Fonte Ebooks: Avxsearch.se

Estamos vivendo numa era de inovação digital disruptiva

disruption-technologiesTecnologia disruptiva ou inovação disruptiva é um termo descrevendo a inovação tecnológica que utiliza uma estratégia “disruptiva” – para derrubar uma tecnologia ou prática existente e dominante no contexto onde estas se encontram. Disrupção é uma ruptura que surge como uma onda e cresce ao ponto de afetar dramaticamente qualquer produto ou serviço que poderá ser superado ou substituído por essa tendência.

A internet é o ambiente cuja inovação disruptiva tem sua origem

Com o aumento da velocidade dos links (conexões) de dados que chegam aos dispositivos conectados: sejam TVs digitais, Smartphones, Tablets, relógios inteligentes e aparelhos com internet embutida – os chamados IOTs (Internet of things – internet das coisas). As práticas (usos), os produtos e os serviços ofertados podem ser explorados livremente e independente de qualquer controle que antes era imposto por governos ou empresas que já atuavam nesse meio.

Exemplos de tecnologias disruptivas

Serviços

Buscador Google: busca com eficiência as informações submetidas.

Blogs: sistemas em formato de sites que possibilitam a publicação ou divulgação de informações; são gratuitos e já superam os principais sistemas de jornalismo e revistas digitais.

Redes Sociais: Facebook, Google+, Flicker, Instagran, Pinterest, etc.

Netflix: domina o streaming (fluxo contínuo de vídeo), oferece um serviço cujo preço é esmagador perto de outros canais digitais equivalentes como as TVs a cabo. No Brasil o preço da assinatura custa hoje R$ 19,90 mensal.

WhatsApp: chat em tempo real para tablets e smartphones.

Uber: é um produto e ao mesmo tempo um serviço de carona (acessado por meio de um aplicativo), cujos usuários chamam um carro particular para leva-los onde desejarem, tendo qualidade e em algumas praças, oferecem preços mais baixos do que os de taxis comuns encontrados nas principais cidades.

AirBnb: serviço de aluguel de hotéis que negocia o hotel ou pousada diretamente com o usuário por meio de um aplicativo.

Spotify: aplicativo que oferece milhões de músicas gratuitas, com a possibilidade de fazer coletâneas e compartilhar livremente nas redes sociais.

Wikipédia: um projeto de enciclopédia coletiva universal e multilíngue estabelecido na Internet sob o princípio wiki. A Wikipédia tem como objetivo fornecer um conteúdo reutilizável livre, objetivo e verificável​​, que todos possam editar e melhorar.

Ebooks: livros digitais que poder ser baixados livremente, tendo opções gratuitas e pagas.

Coursera: cursos gratuitos online para formação profissional e universitária, utilizam o método Curso Online Aberto e Massivo, do inglês Massive Open Online Course (MOOC), é um tipo de curso aberto ofertado por meio de ambientes virtuais de aprendizagem, ferramentas da Web 2.0 ou redes sociais que visam oferecer para um grande número de alunos a oportunidade de ampliar seus conhecimentos num processo de co-produção.

Produtos

Tesla Motors: carros elétricos e baterias residenciais ligadas a painéis solares.

Google e seus robôs e carros autônomos.

Apple com uma enorme variedade de produtos agregados.

Drones civis e militares que executam as mais diversas funções. Ex: robôs autônomos da Amazon para movimentar produtos em seus armazéns.

Intel e a IoT (Internet of Things – internet das coisas). Pretende conectar todo tipo de objetos como: óculos, copos, cafeteiras, camisetas, etc., na internet.

As tecnologias disruptivas vieram para ficar e os maiores beneficiários são os usuários que têm à sua disposição incontáveis opções de escolha com toda a liberdade que somente a internet pode oferecer.

Alguns exemplos de produtos que estarão em uso até 2020.

Amazon warehouse robots (Robôs no armazém da Amazon)

Humanoid Robots in Action (Robôs humanoides em ação) DARPA

Carros autônomos do Google

Korea Humanoid Robot (Robô humanoide da Coreia)

Fonte: TI Especialistas

Fonte: Wikipedia 

Fonte: Tec Hoje 

Archaeology, Anthropology, and Interstellar Communication (Arqueologia, Antropologia e Comunicação Interestelar)

archaeology_anthropology_and_interstellar_communication-cover
Clique na foto e baixe o livro no formato Epub. (Divulgação).

Dirigindo-se ao campo que tem sido dominado pelos astrônomos, físicos, engenheiros e cientistas da computação, os colaboradores desta coletânea de estudos levantam questões que foram negligenciadas pelos cientistas físicos sobre a facilidade de estabelecer uma comunicação significativa com uma inteligência extraterrestre. Estes estudiosos estão abraçados com alguns dos enormes desafios que a humanidade irá enfrentar se for detectado um sinal rico em informações que emana de outro(s) planeta(s).

Ao esboçar sobre as questões que estão no centro da arqueologia e da antropologia contemporânea, podemos nos preparar para o contato com uma civilização extraterrestre, esse dia pode estar situado em um curto espaço de tempo. “Douglas A. Vakoch”.

Para ler livros em Epub é necessário baixar este leitorAdobe Digital Editions (principalmente para Macs e PCs)” – com versões para todos os sistemas operacionais.

Fonte: Nasa

ZMOT – Conquistando o Momento Zero da Verdade

ZMOT
Clique para ler o livro diretamente – PDF. (Divulgação).

Este é um importante E-book (livro digital) que trata como o Marketing influencia nossas decisões de compra nos diversos segmentos sociais e nas várias fases de nossas vidas, principalmente no momento presente da sociedade da hipercomunicação.

ZMOT – Zero Moment of Truth (momento zero da verdade). O momento zero da verdade influencia quais marcas entram na lista de compras, onde os compradores preferem comprar e com quem podem compartilhar os resultados. Cabe a nós entrar nessa conversa neste novo momento em que as decisões são tomadas e fornecer as informações pelas quais os compradores estão ávidos de todas as maneiras.

Alguns assuntos tratados no livro

  • A jornada da decisão de compra mudou. O ZMOT é um novo acréscimo vital ao processo clássico de três etapas de estímulo, prateleira e experiência.
  • O que foi uma vez uma mensagem agora é uma conversa. Os compradores hoje encontram e compartilham suas próprias informações sobre produtos de sua própria maneira, em seu próprio tempo.
  • O boca a boca está mais forte do que nunca. Pela primeira vez na história da humanidade, o boca a boca é um meio arquivado digitalmente.
  • Nenhum MOT (moment of Truth – momento da verdade), é pequeno demais. Se os consumidores pesquisarão na Internet desde casas até assistência médica, eles também o farão com band-aids (curativos) e canetas esferográficas.
  • Os MOTs estão se encontrando. Nossos dispositivos móveis são máquinas de MOT.
    Conforme o uso de smartphones (dispositivos de comunicação inteligentes) cresce, os momentos zero, primeiro e segundo da verdade estão convergindo.

Créditos: Google

O PODER DO MITO, de Joseph Campbell (1988, 360 min) [Legendas em Português]

Download: O poder do mito – PDF: Fonte: http://libgen.org/

Download: O poder do mito - Epub: Fonte: http://lelivros.ninja/
Download: O poder do mito – Epub: Fonte: http://lelivros.ninja/

O que são mitos? Segundo a Wikipédia: um mito (do grego antigo μυθος, translit. “mithós”) é uma narrativa de caráter simbólico-imagético, relacionada a uma dada cultura, que procura explicar e demonstrar, por meio da ação e do modo de ser das personagens, a origem das coisas (do mundo; dos homens; dos animais; das doenças; dos objetos; das práticas de caça, pesca, medicina entre outros; do amor; do ódio; da mentira e das relações, seja entre homens e homens, homens e mulheres e mulheres e mulheres, humanos e animais; enfim, de qualquer coisa fantasiosa que seja).

Joseph Campbell, foi um estudioso que dedicou toda a sua vida ao estudo dos mitos e sua relação com as culturas, religiões, sociedades e, principalmente ao mito como uma verdade “o imaginário coletivo”.

Em nossa cultura atual, não importa em que ponto do planeta estejamos, o mito ainda é aceito como uma verdade causando dúvidas e equívocos tanto na vida cotidiana das pessoas como no contato com a realidade.

Em pleno século XXI o mito continua presente e profundamente arraigado nas crenças e tradições humanas, gerando sofrimentos, conflitos e fazendo da mente uma prisão cuja única saída é a superação do mito em troca da profunda liberdade interior. A aquisição da consciência plena somente é possível através da profunda compreensão do mito.

Segue a entrevista completa de Joseph Campbell no programa do jornalista americano Bill Moyers em 1988:

1º EPISÓDIO – A Mensagem do Mito

2º EPISÓDIO – A Saga do Herói

3º EPISÓDIO – Os Primeiros Contadores de Histórias

ARCHIVE.ORG

4º EPISÓDIO – Sacrifício e Felicidade

ARCHIVE.ORG

5º EPISÓDIO – O Amor e a Deusa

ARCHIVE.ORG

6º EPISÓDIO – Máscara da Eternidade

ARCHIVE.ORG

Créditos: A casa de vidro