O senso comum em confronto com nossa simulação biológica e cerebral

Quem somos de fato?

Esta pergunta remonta há milênios de dúvidas sobre a evolução humana no planeta e hoje em pleno ano de 2023 praticamente quase todas as dúvidas que tínhamos a esse respeito foram resolvidas pela ciência. Para responder de uma forma precisa costumamos usar a ciência e não o simples senso comum. A partir deste poste farei uso intensivo da IA GPT para auxiliar nas perguntas e respostas! A minha foto que aparece no blog foi ambientada pela IA Dalle2.

Quem somos?

Resposta IA GPT: Somos seres humanos, uma espécie animal altamente desenvolvida que habita o planeta Terra. Como seres humanos, temos características únicas que nos distinguem de outras espécies, como a nossa capacidade de raciocínio, comunicação complexa e criação de cultura. Figura 1. Mostra uma pessoa diante da dupla simulação. Imagem gerada por IA Lexica.art cc {rcristo}.

Explicação detalhada da figura 1 gerada pela IA Lexica.art. A dupla simulação ocorre em tempo real de vida da pessoa, então ela começa na origem (concepção e formação do embrião no útero) e segue até ao final da dupla simulação (biológica e cerebral). A luz que está ao final é a aplicação constante do método científico no decorrer desse caminho. Os planetas e estrelas que aparecem no topo, são o ambiente do universo ao qual o planeta terra e a pessoa estão inseridos. A vida da pessoa acaba quando a dupla simulação cessa (tanto para a consciência quanto para a pessoa representada, não há o depois), isso está de acordo com a segunda lei da termodinâmica (entropia).

Anatomia e fisiologia humana

Caso você não seja da área médica, é altamente recomendável ler na íntegra o livro sobre: “Anatomia e Fisiologia“, para não ter dúvidas sobre o funcionamento do nosso corpo. Clique na imagem Figura 2, para baixar ou ler online!

Anatomia: Anatomia (do grego ἀνατέμνω anatemnō “cortar em partes”) é um ramo da biologia que estuda a organização estrutural dos seres vivos, incluindo os sistemas, órgãos e tecidos que os constituem, a aparência e posição das várias partes, as substâncias de que são constituídos, a sua localização e a sua relação com outras partes do corpo. O termo anatomia é geralmente usado como sinônimo de anatomia humana.

A anatomia distingue-se da fisiologia e da bioquímica, que estudam respetivamente as funções dessas partes e os processos químicos envolvidos.

Além disso, como indivíduos, somos únicos em termos de nossa personalidade, pensamentos, emoções e experiências de vida. Somos influenciados pela cultura, sociedade, família, educação e muitos outros fatores que moldam quem somos e como vemos o mundo.

Também podemos ser definidos por nossas ações e escolhas, que afetam a nós mesmos e ao mundo ao nosso redor. Como seres humanos, temos a capacidade de criar mudanças significativas em nossas vidas e na sociedade em geral.

Em resumo, somos seres humanos únicos e complexos, com uma infinidade de características, experiências e escolhas que nos definem como indivíduos e como membros da sociedade. Nossa classificação científica atual é: Homo Sapiens conforme a cronologia a seguir!

Listagem compilada pela IA GPT:

Esta lista é uma representação simplificada da complexa linhagem evolutiva dos hominídeos. Algumas dessas espécies podem ter sido ancestrais comum para outras, enquanto outras podem ter coexistido em diferentes regiões geográficas. Além disso, novas descobertas de fósseis e avanços tecnológicos podem mudar ou complementar a compreensão da nossa evolução ao longo do tempo.

Somos macacos?

Resposta: IA GPT: De um ponto de vista evolutivo, os humanos e os macacos têm um ancestral comum que viveu há milhões de anos. Portanto, biologicamente falando, os humanos são primatas, assim como os macacos. No entanto, é importante ressaltar que os humanos evoluíram ao longo do tempo e têm características únicas e distintas dos outros primatas, incluindo habilidades cognitivas avançadas e uma postura bípede.

No entanto, é importante lembrar que a evolução não é uma linha reta ou hierárquica, e não há uma forma superior ou inferior de ser. Todos os seres vivos evoluíram em resposta às pressões ambientais e cada espécie tem suas próprias adaptações e vantagens evolutivas. Portanto, em última análise, a resposta à pergunta “ainda somos macacos?” depende da perspectiva e do contexto em que se está fazendo a pergunta.

Os Hominídeos (todos nós) formamos uma família taxonômica dos grandes primatas, incluindo os quatro gêneros existentes:

Qual a diferença entre ciência e senso comum?

Figura3. Ilustração representando a iluminação do cérebro simbolizando aplicação do método científico. Gerado com Midjourney IA cc {rcristo}.

Resposta IA GPT: O senso comum é um conjunto de crenças, opiniões e conceitos que são amplamente compartilhados e aceitos pela sociedade. Formados a partir de experiências pessoais, influências sociais e culturais, e não necessariamente baseados em evidências ou fatos comprovados. O senso comum é útil porque permite que as pessoas tomem decisões rápidas e façam julgamentos baseados em suas crenças, sem precisar gastar muito tempo pensando ou pesquisando.

A ciência, por outro lado, é uma abordagem sistemática e rigorosa para o conhecimento, que busca compreender o mundo natural e social através da observação, experimentação e análise de dados. A ciência é baseada em evidências e fatos comprovados, e procura sempre questionar e testar o senso comum, a fim de chegar a conclusões mais precisas e confiáveis. Em vez de seguir crenças ou opiniões, a ciência segue o método científico, que inclui formular hipóteses, conduzir experimentos e revisar continuamente os resultados.

Em resumo, o senso comum é uma forma informal e comum de entender o mundo, enquanto a ciência é uma abordagem sistemática e rigorosa para compreender o mundo com base em evidências e fatos comprovados. Embora o senso comum possa ser útil em situações cotidianas, a ciência é considerada mais precisa e confiável para questões mais complexas e importantes.

O que são vieses e como nos afetam?

Resposta IA GPT: vieses são desvios ou distorções cognitivas que afetam nossas percepções, crenças e decisões. São influenciados por nossas experiências passadas, emoções, ambiente, crenças e outros fatores psicológicos que podem afetar a capacidade de tomar decisões racionais e imparciais.

Os vieses podem nos afetar de várias maneiras. Podem nos levar a tomar decisões ruins, ignorar informações importantes, ou formar julgamentos injustos ou imprecisos. Podem influenciar nossa percepção de outras pessoas, grupos ou situações, o que pode levar a preconceitos e discriminação. Além disso, os vieses também podem afetar nossas emoções, nos fazendo sentir mais positivos ou negativos em relação a certas coisas ou pessoas.

Por exemplo, a tendência de acreditar em informações que confirmam nossas crenças existentes (viés de confirmação) pode nos impedir de considerar evidências opostas e nos levar a tomar decisões baseadas em informações incompletas ou imprecisas. O viés de grupo pode levar a preferência por pessoas ou coisas associadas a um determinado grupo, enquanto o viés de representatividade pode levar a julgamentos baseados em estereótipos.

Reconhecer e lidar com nossos próprios vieses é um passo importante para tomar decisões mais racionais e justas. É importante estar ciente de nossas emoções, preconceitos e suposições, e procurar informações objetivas e diversas para ajudar a informar nossas decisões. Além disso, é importante ser crítico em relação às informações que recebemos e considerar diferentes perspectivas antes de formar um julgamento.

É possível eliminar vieses?

Resposta IA GPT: Embora seja difícil eliminar completamente os vieses, é possível reduzir sua influência e tomar decisões mais racionais e imparciais.

Uma das formas de reduzir os vieses é através da consciência e da autocrítica. Reconhecer nossos próprios vieses é um passo importante para minimizar seu impacto em nossas decisões. Podemos aprender a questionar nossas próprias crenças e a considerar diferentes perspectivas antes de formar um julgamento.

Além disso, a exposição a diferentes perspectivas e a informações variadas também pode ajudar a reduzir os vieses. A leitura de notícias de diferentes fontes, a interação com pessoas de diferentes origens e a exposição a ideias diferentes podem ajudar a ampliar nossa visão de mundo e a reduzir nossos preconceitos.

As empresas e organizações também podem ajudar a reduzir os vieses, implementando políticas e práticas que promovam a diversidade e a inclusão. Por exemplo, a contratação de pessoas de diferentes origens, a promoção da igualdade salarial e a implementação de treinamentos antevisses podem ajudar a promover uma cultura mais justa e equitativa.

Em resumo, embora não seja possível eliminar completamente os vieses, podemos reduzir sua influência através da consciência, autocrítica, exposição a diferentes perspectivas e implementação de políticas e práticas justas e inclusivas.

Resumo: viés cognitivo x método científico

  • Viés cognitivo = senso comum, pessoal, parcial, limitado – na maioria dos casos – não comprovado.
  • CVJV (conhecimento) + MC = crenças verdadeiras, justificadas e validadas pelo “método científico”.

Existe ciência sem o método científico?

É óbvio que não! A ciência é aplicação do método científico; portanto, sem o método científico a ciência deixa de existir. Mesmo assim, as pessoas ainda utilizam o senso comum no tratamento de assuntos complexos! Esse é o motivo de o ensino no Brasil ser precário, imagine como seria possível alguém dominar uma área científica, quando na maioria das escolas é exigido uma média de apenas 50%, então ocorre a nulidade dos resultados. O ensino em nosso país é exatamente como jogar uma moeda com 50% de chances em dar cara (acertos) e 50% coroa (erros)! Esta é uma reflexão que nossos educadores deveriam ter!

O senso comum na definição cultural dos povos

A maioria das culturas hoje no planeta são em última análise um subproduto do senso comum de seus integrantes. O Brasil é um país onde o modo de pensar e – até mesmo – definir questões políticas – em muitos casos -, definidas por pessoas que não sabem ou estão fora do escopo técnico ou científico e mesmo assim acabam decidindo (em razão de seus cargos de cunho político) sobre vários assuntos de interesses públicos. Um exemplo: as políticas desastrosas que culminaram na decisão de indicar remédios ineficazes como: ivermectina e cloroquina como tratamento para a doença covid-19 causada pelo coronavírus.

Desde o início da pandemia de coronavírus, os testes científicos e laboratoriais comprovaram que não há remédios eficazes para o tratamento de covid-19, somente as vacinas são eficazes! Segue abaixo um exemplo da minha pergunta para a IA:

Resposta IA GPT: Sim, o senso comum pode limitar o progresso dos povos no planeta, especialmente quando as práticas contrárias às ciências impedem a adoção de tecnologias e práticas mais avançadas e eficientes.

Por exemplo, algumas culturas podem ter crenças e práticas que desencorajam o uso de medicamentos e tratamentos médicos baseados em evidências científicas, o que pode levar a uma maior morbidade e mortalidade por doenças evitáveis. Além disso, a rejeição de tecnologias modernas, como energia renovável, pode atrasar a adoção de soluções sustentáveis para os desafios ambientais.

Portanto, é importante promover a educação científica e o pensamento crítico para ajudar as pessoas a entender a importância da ciência e suas aplicações práticas em nossa sociedade. A colaboração entre os cientistas e as comunidades locais também pode ajudar a construir confiança e a promover a adoção de tecnologias e práticas mais avançadas. Por outro lado, se as decisões são tomadas com base no método científico, as políticas e práticas são mais propensas a serem baseadas em evidências empíricas sólidas, o que pode levar a soluções mais eficazes e eficientes para os problemas enfrentados pela humanidade. Portanto, é importante promover a educação científica e o uso do método científico em todos os aspectos da sociedade, para que possamos enfrentar melhor os desafios globais e avançar em direção a um futuro mais sustentável e próspero.

Acesse o link sobre o Pisa e leia as estatísticas comparando o Brasil com outros países da OCDE.

Pessoas pouco educadas no sistema formal de educação (escolas e autodidatas) trocam o método científico pelo senso comum?

Resposta IA GPT: Pessoas pouco educadas no sistema formal de educação podem ser mais propensas a confiar no senso comum em vez do método científico, principalmente porque não foram ensinadas a utilizar o método científico de forma adequada. O senso comum é uma maneira intuitiva de entender o mundo ao nosso redor e é baseado em nossas experiências cotidianas, o que o torna acessível para todos.

Porém, é importante ressaltar que o senso comum não é necessariamente preciso e pode ser influenciado por crenças pessoais, preconceitos e experiências limitadas. Por outro lado, o método científico é uma abordagem mais sistemática e objetiva que busca entender o mundo por meio de observação, experimentação e análise de dados.

A educação formal pode ajudar a ensinar as pessoas a usar o método científico para entender o mundo, promovendo a compreensão crítica e o pensamento racional. É importante lembrar que a educação formal não é a única fonte de conhecimento e muitas vezes o senso comum pode ser valioso em certas situações. No entanto, a educação formal pode ajudar as pessoas a separar fatos de ficção e a tomar decisões informadas com base em evidências empíricas.

Surgimento da escrita no planeta?

Resposta IA GPT: a escrita é uma invenção fundamental para a transmissão e preservação do conhecimento humano ao longo da história. Acredita-se que a escrita tenha surgido de forma independente em diferentes partes do mundo, por volta de 4000 AEC.

Figura4. Nota de venda de um escravo do sexo masculino em um edifício em Xurupaque, tabuleta suméria, c. 2 600 AEC.

As primeiras formas de escrita foram desenvolvidas pelas civilizações mesopotâmicas, como os sumérios, acádios e babilônios, que utilizavam a escrita cuneiforme. Na China, a escrita se desenvolveu a partir de cerca de 1200 AEC com os caracteres chineses. No Egito antigo, a escrita hieroglífica surgiu em torno de 3000 AEC e foi utilizada por mais de 3000 anos.

A escrita também se desenvolveu nas Américas, com destaque para a escrita maia e a escrita dos povos Andinos. No continente africano, a escrita surgiu em diversas regiões, como a escrita meroítica do antigo reino cuxe, no Sudão, e a escrita etíope, que remonta a cerca de 200 AEC.

Ao longo da história, a escrita evoluiu para diferentes formas, como a escrita alfabética, a escrita silábica e a escrita ideográfica. Com o advento da tecnologia, novas formas de escrita foram desenvolvidas, como a escrita digital e a escrita em código de programação.

Pesquisa sobre alfabetização no Brasil até 1920

Segundo várias pesquisas comparadas (fontes seguras nas referências bibliográficas), o índice de analfabetismo oscilava em torno de 72% em meados de 1920. Clique no quadro abaixo para acessar a pesquisa.

Analfabetismo no país cai de 11,5% para 8,7% nos últimos oito anos

O analfabetismo de jovens e adultos vem sendo reduzido no Brasil — passou de 11,5% em 2004 para 8,7% em 2012, na Pesquisa Nacional por Amostra de Domicílio (Pnad). Essa redução é ainda mais intensa no Norte e Nordeste, onde estão localizados os maiores índices de analfabetismo do país. Na faixa de 15 a 19 anos, a Pnad de 2012 registra taxa de analfabetismo de 1,2%, muito inferior à média geral, o que demonstra a efetividade das políticas em curso para a educação básica.

A crença em inexistentes é o produto direto do senso comum?

Em nosso país as pesquisas demonstraram que foi a demora no acesso à educação pela maioria das pessoas a razão principal que provocou um retrocesso cultural, educacional e científico.

O senso comum sem acesso das pessoas à educação provocou a crença em inexistentes?

Resposta IA GPT: Sim, é possível que a falta de acesso à educação possa levar as pessoas a acreditarem em coisas que não são verdadeiras, ou que não possuem evidências científicas ou lógicas que as sustentem. Isso ocorre porque o senso comum é influenciado pelas informações e conhecimentos que são transmitidos de geração em geração, através de histórias, tradições e experiências pessoais, e nem sempre essas informações são precisas ou baseadas em fatos concretos.

Quando as pessoas não têm acesso à educação formal, podem não ter as ferramentas necessárias para avaliar criticamente as informações que recebem, distinguir entre o que é verdadeiro e o que não é, e identificar possíveis preconceitos e estereótipos presentes no senso comum. Isso pode levar a crenças em coisas que não existem, ou que são contrárias à realidade científica e factual.

Porém, vale lembrar que “mesmo pessoas com acesso à educação podem acreditar em coisas que não são verdadeiras”, e que o senso comum pode ser influenciado por uma série de fatores além da falta de educação formal. Por isso, é importante que as pessoas sejam incentivadas a buscar conhecimentos diversos e a questionar as informações que recebem, de forma a desenvolver um senso crítico e aprimorar sua compreensão do mundo.

Quem inventou o senso comum?

Ninguém! Todos nós nascemos com a dupla simulação: Biológica e Cerebral.

Resposta IA GPT: O senso comum não foi inventado por uma única pessoa específica, mas é uma expressão utilizada para descrever o conjunto de conhecimentos, crenças e opiniões que são amplamente compartilhados e aceitos por uma determinada comunidade ou sociedade. É uma forma de conhecimento que é adquirida por meio da experiência pessoal, da observação e da interação com outras pessoas ao longo da vida.

Assim, podemos afirmar que o senso comum foi “inventado” coletivamente pela humanidade ao longo da história, como uma forma de compreender e dar sentido ao mundo ao nosso redor. Diferentes culturas e épocas têm diferentes formas de senso comum, e ele pode ser influenciado por fatores como a religião, a política, a ciência, a tecnologia e outros aspectos da vida social e cultural.

Poderia listar as falsas crenças em inexistentes?

Resposta IA GPT: Existem muitas falsas crenças que as pessoas podem acreditar em função de uma falta de acesso à educação ou de influências culturais e sociais. Algumas das crenças mais comuns que não possuem evidências científicas ou lógicas que as sustentem são:

  • Superstições: muitas pessoas acreditam em superstições, como quebrar um espelho traz má sorte, que um gato preto cruzando o caminho é sinal de azar, ou que usar uma roupa vermelha na virada do ano atrai sorte. Essas crenças não possuem fundamentos lógicos ou científicos e são baseadas em tradições populares.
  • Mitos e lendas: algumas pessoas acreditam em mitos e lendas, como a existência de criaturas sobrenaturais, como vampiros, lobisomens e fadas. Essas crenças são baseadas em histórias populares que foram transmitidas ao longo do tempo, mas não possuem evidências concretas que as sustentem.
  • Teorias da conspiração: muitas pessoas acreditam em teorias da conspiração, que são crenças de que determinados eventos ou fatos são resultados de um complô secreto ou de uma manipulação da verdade por parte de um grupo de pessoas ou organizações. Essas crenças são frequentemente baseadas em informações distorcidas ou incompletas e não possuem evidências concretas.
  • Pseudociências: algumas pessoas acreditam em pseudociências, como a astrologia, a quiropraxia, a homeopatia e outras práticas que não possuem fundamentos científicos ou que não foram comprovadas por estudos empíricos. Essas crenças podem levar as pessoas a tomar decisões prejudiciais para sua saúde e bem-estar.
  • Preconceitos e estereótipos: muitas pessoas possuem preconceitos e estereótipos em relação a determinados grupos sociais, baseados em crenças falsas sobre suas características e comportamentos. Essas crenças são frequentemente resultado de uma falta de contato ou de informações precisas sobre esses grupos, e podem levar a discriminação e injustiças.

É importante lembrar que a lista acima não é exaustiva e que existem muitas outras falsas crenças que as pessoas podem acreditar, algumas das quais podem ser prejudiciais para si mesmas e para os outros. Por isso, é importante buscar informações precisas e comprovadas, questionar o senso comum e desenvolver um pensamento crítico e reflexivo sobre o mundo à nossa volta.

Como funciona a simulação biológica dos seres vivos?

Resposta IA GPT: A simulação biológica de seres vivos é um campo de estudo interdisciplinar que envolve a aplicação de princípios da biologia, da física, da química e da computação para modelar e simular sistemas biológicos. Essas simulações podem ser usadas para estudar o funcionamento de organismos vivos, entender processos biológicos complexos e desenvolver novas terapias e medicamentos.

A simulação biológica pode ser realizada em diferentes níveis de complexidade, desde simulações simples de sistemas bioquímicos, como enzimas e proteínas, até simulações complexas de sistemas biológicos completos, como células, tecidos e órgãos.

As simulações biológicas são baseadas em modelos matemáticos e computacionais que descrevem os processos biológicos em termos de equações e algoritmos. Esses modelos são construídos a partir de dados experimentais e teorias científicas, e são validados por meio de comparações com dados experimentais reais.

Uma das abordagens mais comuns na simulação biológica é a modelagem baseada em agentes, em que os seres vivos são simulados como agentes individuais que seguem regras comportamentais específicas. Por exemplo, os modelos baseados em agentes podem ser usados para simular a migração de células em tecidos, ou para estudar a interação entre microrganismos em um ecossistema.

Outra abordagem comum na simulação biológica é a modelagem de sistemas dinâmicos, que descreve a evolução temporal de um sistema biológico em resposta a mudanças em variáveis chave, como concentração de nutrientes ou hormônios. Esses modelos podem ser usados para estudar a dinâmica de populações de organismos, ou para entender o comportamento de sistemas biológicos complexos, como redes metabólicas e vias de sinalização celular.

A simulação biológica é uma ferramenta poderosa para a compreensão dos processos biológicos e para o desenvolvimento de novas terapias e medicamentos. No entanto, as simulações biológicas são apenas uma representação aproximada da realidade biológica, e podem não levar em conta todas as variáveis e complexidades dos sistemas biológicos reais. Por isso, é importante validar os resultados das simulações com dados experimentais reais e manter uma abordagem crítica e cuidadosa na interpretação dos resultados das simulações.

Como nosso cérebro simula o mundo através dos sentidos?

Resposta IA GPT: O nosso cérebro utiliza informações dos nossos sentidos, como visão, audição, olfato, paladar e tato, para criar uma representação interna do mundo ao nosso redor. Esse processo é conhecido como percepção e envolve uma série de processos neurais complexos que ocorrem em diferentes áreas do cérebro.

A percepção começa com a transdução, que é a conversão de estímulos sensoriais em sinais elétricos que podem ser processados pelo cérebro. Por exemplo, na visão, a luz é convertida em sinais elétricos pelos fotorreceptores da retina, e na audição, as ondas sonoras são convertidas em sinais elétricos pelas células ciliadas da cóclea.

Depois da transdução, os sinais são enviados para diferentes áreas do cérebro, onde são processados e integrados. Por exemplo, na visão, as informações visuais são processadas em várias áreas do córtex visual, onde são integradas para criar uma representação tridimensional do ambiente visual.

Além disso, o cérebro utiliza informações contextuais e experiências anteriores para ajudar a interpretar as informações sensoriais. Por exemplo, se vemos uma maçã, nosso cérebro pode usar informações contextuais, como a presença de uma árvore, para inferir que a maçã está em uma árvore.

O processo de percepção é influenciado por fatores como atenção, emoção e expectativas. Por exemplo, se estamos prestando atenção em uma conversa, nosso cérebro pode ignorar informações sensoriais irrelevantes para a conversa, como o som de um carro passando.

Em resumo, o nosso cérebro utiliza informações sensoriais, processamento neural e experiências anteriores para criar uma representação interna do mundo ao nosso redor, que chamamos de percepção. Esse processo é complexo e envolve várias áreas do cérebro trabalhando em conjunto para criar uma imagem coerente do mundo.

Como os seres biológicos fazem a simulação de suas existências com base nas leis da entropia?

Resposta IA GPT: Os seres biológicos são sistemas termodinâmicos abertos que consomem energia e matéria do ambiente para manter sua existência. No entanto, a segunda lei da termodinâmica, também conhecida como lei da entropia, estabelece que a entropia, ou a desordem, do universo sempre aumenta com o tempo. Como, então, os seres vivos conseguem manter sua organização em face da tendência natural em direção à desordem?

A resposta a essa pergunta está na capacidade dos seres biológicos de dissipar energia e matéria para o ambiente. Quando um organismo converte energia e matéria em trabalho útil, ele produz calor e resíduos, que são dissipados para o ambiente. Essa dissipação de energia aumenta a entropia do ambiente, permitindo que a entropia do organismo seja mantida em um estado de baixa entropia.

Em outras palavras, os seres vivos são capazes de manter sua organização interna ao consumir energia e matéria do ambiente e dissipar calor e resíduos. Essa capacidade é fundamental para a sobrevivência dos organismos, uma vez que a falha em dissipar energia e matéria resultaria em um aumento da entropia interna, levando eventualmente à morte.

A simulação natural dos seres vivos envolve a interação dos organismos com o ambiente, trocando energia e matéria com ele. Os seres vivos são sistemas abertos que podem manter um estado de baixa entropia através de processos metabólicos que convertem energia e matéria em formas utilizáveis pelo organismo. Esses processos criam entropia, mas os seres vivos podem excretar essa entropia para o ambiente, mantendo um estado de ordem em um ambiente que tende a favorecer a desordem. Portanto, a simulação natural dos seres vivos envolve a troca termodinâmica com o ambiente para manter um estado de baixa entropia e manter a ordem em um ambiente desordenado.

A percepção da realidade interna e externa seria uma simulação cerebral?

Resposta IA GPT: Sim, a percepção da realidade interna e externa pode ser vista como uma simulação cerebral. Isso porque a nossa percepção da realidade é baseada em informações sensoriais que são processadas pelo cérebro e integradas em uma representação coerente do mundo ao nosso redor. Essa representação não é uma cópia exata da realidade – Sic: realismo científico -, mas uma interpretação baseada nas informações sensoriais e nas experiências anteriores do indivíduo.

Assim, a percepção da realidade é uma construção interna do cérebro que é influenciada por uma série de fatores, como a atenção, a emoção e as expectativas. A percepção também pode ser influenciada por ilusões e distorções perceptuais, que mostram que a nossa percepção da realidade não é uma cópia fiel do mundo real, mas sim uma construção interna do cérebro.

Por isso, podemos afirmar que nossa percepção da realidade é uma simulação cerebral, que é construída a partir das informações sensoriais e das experiências anteriores do indivíduo.

Deus pode ser considerado um inexistente inventado pelo senso comum? Visto que não existe fora do sistema de crenças?

Resposta IA GPT: A existência de Deus é um tema complexo que envolve crenças, filosofia, teologia e ciência. Não é possível afirmar com certeza se Deus existe ou não, pois essa é uma questão que depende de cada indivíduo e sua perspectiva pessoal.

No entanto, é possível afirmar que a crença em Deus é um fenômeno presente em diversas culturas e religiões ao longo da história humana. Para muitas pessoas, a crença em Deus é um elemento importante em suas vidas, proporcionando conforto, orientação moral e um senso de propósito.

Por outro lado, para outras pessoas, a ideia de Deus é uma construção humana, criada para explicar fenômenos naturais e fornecer respostas para perguntas existenciais. Para essas pessoas, Deus não é uma entidade real, mas sim uma invenção do senso comum, uma ideia que existe dentro do sistema de crenças humano.

Em resumo, a questão da existência de Deus é uma questão pessoal e depende da perspectiva individual de cada pessoa. Para algumas pessoas, Deus é real e influencia suas vidas de maneira significativa, enquanto para outras, Deus é uma invenção do senso comum.

Como podemos representar o campo do conhecimento?

Diante das perguntas e respostas acima (a IA GPT é uma auxiliar notável em todos os aspectos), pensei em representar essas afirmações por meio da matemática com o objetivo de alcançar uma melhor precisão neste contexto. Clique nos links para acesso ao conteúdo explicativo em cada tópico da equação:

O campo do conhecimento é amplo, podemos representá-lo por: {Cn,}.

Não há matemática embarcada na física, a matemática está embarcada somente em nossos modelos, essa é a razão das leis da física serem uma descoberta, enquanto toda a matemática é uma invenção de nosso cérebro.

Como a matemática é uma invenção humana, não existe matemática embarcada na física, somente em nossos modelos matemáticos?

Resposta IA GPT: A matemática é uma linguagem que os seres humanos criaram para descrever e compreender o mundo que nos rodeia. A matemática não é uma realidade em si mesma, mas sim uma ferramenta que os cientistas e pesquisadores usam para representar e explicar o comportamento dos fenômenos físicos.

No entanto, a matemática é uma ferramenta muito eficaz para descrever as leis da natureza e os fenômenos físicos, e muitos modelos matemáticos são usados para representar e prever o comportamento de sistemas físicos. A física, por exemplo, é uma ciência que usa a matemática como uma linguagem para descrever as leis da natureza e prever o comportamento dos sistemas físicos.

Em outras palavras, a matemática não é uma realidade física, mas é uma ferramenta muito útil para descrever e entender a natureza. A matemática está presente nos modelos físicos que usamos para entender o mundo natural e prever o comportamento de sistemas físicos. Portanto, é correto afirmar que a matemática está embarcada em todos os nossos modelos que explicam a física, mas apenas na medida em que a física usa a matemática como uma ferramenta para descrever e entender os fenômenos físicos.

Minha crítica ao sistema educacional no Brasil

O ED (erro degrau – farei um posto sobre ele em breve…) em nosso sistema educacional começou a partir de C0 – no Brasil a matemática do vazio {} não foi ensinada nas fases educacionais de base – principalmente com relação a invenção da matemática e seu uso na modelagem física -, isso gerou um atraso expressivo no desenvolvimento da maioria das áreas estudadas. Esta é uma forte proposição de que o senso comum sabotou o ensino no Brasil!

Conclusão: nós não podemos contar com aquilo que não podemos inventar/simular.

{RC}

Não ria das notações; invente-as, elas são poderosas. Na verdade, a matemática é em grande medida, invenção de notações melhores.

Richard Feynman

Realismo interno e externo

Nesta instância, o realismo interno é a construção do conhecimento e o externo é a aplicação dele. Quando aplicamos o conhecimento e obtemos sucesso temos uma teoria, quando não há comprovação a hipótese não é válida e todo o ciclo recomeça. A simulação cerebral é calibrada conforme a obtenção dos resultados. É um ciclo sem fim, C.

  • Por exemplo: a primeira palavra em um livro é uma palavra vazia.
  • Em física um evento que não pode ocorrer é um evento vazio.

Então, podemos afirmar que o conhecimento que nasce vazio, também seria estocástico em sua origem?

Resposta IA GPT: Podemos afirmar que o processo de aquisição de conhecimento é estocástico em sua natureza, no sentido de que envolve incertezas e aleatoriedades.

Quando nos deparamos com um novo assunto, não sabemos quais informações serão mais relevantes ou importantes, nem como elas se relacionam entre si. Além disso, o processo de aquisição de conhecimento envolve a seleção de fontes de informação, como livros, artigos e palestras, que podem apresentar diferentes pontos de vista e abordagens para o mesmo assunto.

Nesse sentido, a aquisição de conhecimento é influenciada por fatores estocásticos, como a aleatoriedade na seleção de fontes de informação, a incerteza em relação à relevância das informações e a variação nas interpretações e perspectivas sobre o mesmo assunto.

Portanto, podemos afirmar que o conhecimento que nasce vazio é estocástico em sua origem, uma vez que sua construção envolve incertezas e aleatoriedades inerentes ao processo de aquisição de conhecimento.

Uma aplicação prática e objetiva do vazio ∅ na obtenção de variáveis randômicas:

Algoritmo: SubespacoRandomico(n) :
// todos os lançamentos de moeda são mutuamente independentes
A=∅
for i=1 to n
do “jogar uma moeda justa”;
if “o resultado do lançamento da moeda é cara”
then A=A∪{i}
endif
endfor;
return A

Convertido para execução online em linguagem Java:

//Algoritmo: SubespacoRandomico(n)
//Todos os lançamentos de moeda são mutuamente independentes
import java.util.HashSet;
import java.util.Random;
import java.util.Set;
public class Main {
    public static void main(String[] args) {
        int n = 10;
        Set<Integer> A = new HashSet<>();
        Random rand = new Random();
            for (int i = 1; i <= n; i++) {
            if (rand.nextBoolean()) {
                A.add(i);
            }
        }
        System.out.println("Subespaço Aleatório de tamanho " + A.size() + ": " + A);
    }
}

Copie o código Java e cole no compilador online (apague o conteúdo que estiver lá e cole o código acima na íntegra e clique em Run >: w3schools).

Recomendo a leitura do livro (clique na capa para acesso direto): Introduction to Theory of Computation April 17, 2019 – Anil Maheshwari, Michiel Smid – inclusive; adaptei o algoritmo acima para a linguagem Java com o objetivo de testar o algoritmo proposto no livro. O livro é para leigos e não exige conhecimento prévio, a única exigência – de praxe – é saber ler em inglês. Boa leitura! {RC}.

Referências Bibliográficas

Fusão nuclear sustentável é alcançada por ignição a laser em 05/12/2022

Desejo a todos um espetacular 2023 com muita saúde, foco no progresso e crescimentos sustentável! {RC}.

No finalzinho de 2022 conseguimos atingir a fusão nuclear por ignição a laser

Em 5 de dezembro de 2022, o U.S. Department of Energy (DOE) – Departamento de Energia dos Estados Unidos, e a National Nuclear Security Administration (NNSA) – Administração Nacional de Segurança Nuclear, anunciaram em 05/12/2022 a realização da fusão por ignição no Laboratório Nacional Lawrence Livermore (LLNL) – um grande avanço científico em desenvolvimento que abrirá caminho para avanços na indústria nacional e o futuro da energia limpa.

A linha de luz para a ignição, ilustração demonstrando como a ignição do deutério/trítio foi obtida na câmera de fusão nuclear do Lawrence Livermore National Laboratory. Créditos: CC LLNL.

Uma equipe da National Ignition Facility (NIF) Instalação Nacional de Ignição do LLNL conduziu o primeiro experimento de fusão controlada da história ao atingir esse marco, também conhecido como equilíbrio científico de energia, o que significa que produziu mais energia a partir da fusão do que a energia do laser usada para impulsioná-la. Temos uma compreensão teórica da fusão há mais de um século, mas a jornada do saber ao fazer pode ser longa e árdua. O marco de hoje mostra o que podemos fazer com perseverança, disse o Dr. Arati Prabhakar, principal conselheiro do presidente para Ciência e Tecnologia e diretor do Gabinete de Política Científica e Tecnológica da Casa Branca. Na figura ao lado vemos os braços criogênicos segurando o cilindro Hohlraum.

A câmara alvo da National Ignition Facility do LLNL, onde 192 feixes de laser forneceram mais de 2 milhões de joules de energia ultravioleta a uma pequena pastilha de combustível para criar fusão por ignição em 5 de dezembro de 2022. CC LLNL.

A busca da fusão por ignição no laboratório é um dos desafios científicos mais significativos já enfrentados pela humanidade, e alcançá-lo é um triunfo da ciência, da engenharia e, acima de tudo, das pessoas. Disse o diretor do LLNL. Atravessar esse limiar é a visão que tem impulsionado 60 anos de busca dedicada – um processo contínuo de aprendizado, construção, expansão de conhecimento e capacidade e, em seguida, encontrar maneiras de superar os novos desafios que surgiram.

Dr. Kim Budil

Composição dos aparatos de fusão por confinamento inercial

O confinamento inercial é um método de confinamento de partículas ou campos de energia, como campos elétricos ou magnéticos, usando forças inerciais para mantê-los concentrados em uma determinada área. Isso é feito criando condições em que a partícula ou campo de energia é forçado a seguir uma trajetória circular ou elíptica em alta velocidade, de modo que a pseudo força centrífuga gerada pelo movimento mantém a partícula ou campo confinados em uma região específica.

O confinamento inercial é utilizado em várias áreas, incluindo fusão nuclear, que busca confinar o plasma quente e ionizado gerado pelo processo de fusão para controlar e aproveitar a energia liberada. É também utilizado em experimentos científicos para estudar a natureza da matéria e da energia em condições extremas.

Cilindro Hohlraum (câmara de radiação termodinâmica)

Maquete de um hohlraum banhado a ouro projetado para uso no National Ignition Facility (NIF) Instalação Nacional de Ignição. Um cilindro Hohlraum típico tem apenas alguns milímetros de largura com orifícios de entrada de laser em cada extremidade. A cápsula de combustível de deutério-trítio (não mostrada) está adaptada dentro do hohlraum para experimentos de fusão por confinamento inercial (ICF) no National Ignition Facility (NIF), Instalação Nacional de Ignição.

Esfera combustível DT (deutério/trítio) de 2 mm de diâmetro

Uma cápsula alvo, com apenas 2 milímetros de diâmetro, é visível através de uma porta em um hohlraum. (Foto de Eduard Dewald.).

Tubos de enchimento DT (Deutério e Trítio)

Os tubos de enchimento são usados para injetar uma mistura de combustível de deutério e trítio (DT) em uma casca esférica do tamanho de um grão de pimenta suspensa dentro de um hohlraum. Os 192 feixes de laser de alta energia do NIF atingem as paredes internas do hohlraum, gerando raios X que desencadeiam uma reação de fusão à medida que a mistura DT se comprime em um ponto quente gerador de energia.

A cápsula de combustível redonda está no final do tubo de enchimento, que se reduz a 2 mícrons no invólucro. Crédito: General Atomics.

Braço criogênico que segura o cilindro hohlraum

Os alvos NIF são controlados com precisão em um sistema de resfriamento criogênico que mantém o combustível deutério-trítio congelado dentro de uma cápsula de tamanho milimétrico.

O que é fusão nuclear Deutério Trítio?

Animação da fusão de deutério/trítio com liberação de energia. CC BY-SA 3.0

Em uma reação de fusão, os núcleos de dois isótopos de hidrogênio, deutério (contendo um nêutron e um próton) e trítio (dois nêutrons e um próton), são forçados juntos por extremos de temperatura e pressão e se fundem para formar um núcleo de hélio. No processo, parte da massa do hidrogênio é liberada como energia.

A fusão descreve o que acontece quando os núcleos de átomos leves, como o hidrogênio, superam a força eletrostática repulsiva que os mantém separados. Quando os núcleos se aproximam o suficiente, a força que une prótons e nêutrons, a força forte, assume e puxa os núcleos ainda mais próximos, de modo que eles “se fundem” em um novo núcleo de hélio mais pesado com dois nêutrons e dois prótons.

O núcleo de hélio, também conhecido como partícula alfa, tem uma massa ligeiramente menor que a soma das massas dos dois núcleos de hidrogênio, e a diferença de massa é liberada como energia de acordo com a famosa fórmula de Albert Einstein E=mc2. A energia é liberada na forma de partículas alfa, nêutrons de alta energia e outras formas de energia, como radiação eletromagnética.

A fusão nuclear é diferente da fissão nuclear, onde os núcleos de elementos pesados como o urânio são divididos, formando dois elementos mais leves – o processo usado nas usinas nucleares de hoje. Em ambas as reações nucleares, os próprios elementos mudam e se tornam novos elementos – e no processo, uma pequena quantidade de massa é convertida em uma grande quantidade de energia.

Como a injeção a laser realiza a fusão?

Ilustração de como funciona a fusão nuclear pelo processo de ignição a laser. Feixes de laser (azul) entram no hohlraum através orifícios de entrada do laser em vários ângulos. No canto superior esquerdo, um diagrama de pizza esquemático mostrando a distribuição radial e as dimensões dos materiais em diamante (carbono de alta densidade, HDC) implosões do ablator. No canto inferior esquerdo, a forma de pulso temporal de energia do laser (azul) e radiação hohlraum associada à temperatura (verde). No centro do hohlraum, a cápsula é banhada em raios X, que ablacionam a superfície externa da cápsula. A pressão gerada impulsiona a cápsula para dentro sobre si mesma (uma implosão) que comprime e aquece o combustível de fusão durante o processo de implosão. Clique na foto acima para ler o artigo técnico explicativo. CC Nature.

Com uma alta temperatura do íon (Ti) aproximadamente 100 TP (terapascais) ou 1.16×107 °C (graus celsius) ou 11,6 milhões de graus centígrados – necessária para fusão – enquanto o combustível estagna no centro da implosão, o DT forma um ponto quente na superfície interna do combustível e o trabalho é realizado; o ponto quente, gerando altas temperaturas de íons e elétrons próximos do equilíbrio térmico (Ti ≈ Te ≈ 4–5 keV, 1 keV = 1,16 × 107K, onde Ti e Te são as temperaturas do íon e do elétron). Se as condições de alta temperatura e pressão são alcançadas, o ponto quente inicia as reações de fusão DT e o auto aquecimento aumentam ainda mais o Ti.

O hohlraum absorve aproximadamente 10-15% dos raios X, causando a ionização da borda externa da cápsula (ablator),  gerando alta pressão da ordem de 9.869×108 atm (atmosferas) ou 986,9 milhões de atmosferas terrestres de pressão, um processo denominado ablação. Uma concha criogênica contendo o combustível DT é colocada em camadas dentro da superfície interna do ablator, que está em equilíbrio de pressão parcial com vapor DT no centro da cápsula. A aceleração dirigida para dentro causada pela ablação impulsiona a cápsula e o combustível DT para dentro de si (uma implosão, mostrado esquematicamente à direita na foto acima) com enorme aceleração (cerca de 1014 m s-2) obtendo velocidades de aproximadamente 350-400 km s-1, em questão de nanossegundos, a maior parte da energia de raios X (cerca de 92-95%) é absorvida pela cápsula e consumida pelo processo de ablação, mas com um resultado, o combustível DT obtém energia cinética considerável (cerca de 10-20 kJ) dentro um volume muito pequeno. Ao disparar um conjunto de 192 lasers com uma energia de 2,05 (MJ) mega joules, ocorreu a fusão do Hidrogênio, produzindo o equivalente a 3,15 MJ de energia. O ganho líquido descontado a energia gasta pelo laser foi de 1.9 MJ (Mega Joules) ou 528 Wh (Watts hora).

Quando teremos energia comercial gerada por fusão de ignição a laser?

Até que essa tecnologia possa ser amplamente distribuída, pode levar décadas, os desafios neste momento são: tornar viável a geração com ampliação da potência dos lasers, redução da câmara geradora, repetição do experimento, etc. Entretanto, esse tempo poderá ser diminuído conforme investimentos sejam aplicados pela iniciativa privada nesta nova tecnologia. Outra questão importante é que o uso de energia com base nos fósseis está com os dias contados em nosso planeta. A sustentabilidade energética é o único caminho civilizatório viável no médio e longo prazos.

Referências Bibliográficas

Aprenda a identificar e compreender os espaços de probabilidades

O que são espaços/subespaços probabilísticos?

Figura 1 – Menina adolescente concentrada olhando atentamente para a projeção ao criá-la com a ajuda de um smartphone moderno. Créditos: Dmyrto_Z.

Tanto na matemática quanto na física e principalmente na teoria da informação, aplicamos os conceitos de possibilidades/probabilidades junto com a adição do qualificativo existencial para completar o conceito de espaços e suas subdivisões: subespaços.

O conceito de probabilidade é considerado um conceito primitivo que não pode ser definido em termos de conceitos ainda mais primitivos, assim como um ponto ou uma linha na geometria são considerados conceitos primitivos. Deste modo, mesmo na falta de uma definição adequada do termo, probabilidade é um conceito fascinante e extremamente útil.

A teoria da probabilidade foi desenvolvida principalmente no século XVII por Fermat (1601-1665), Pascal (1623-1705), Huyghens (1629-1695) e por J. Bernoulli (1654-1705). A principal motivação para desenvolver a teoria matemática da probabilidade foi responder várias perguntas sobre jogos e aleatoriedade.

Abordagem Axiomática

Na matemática, um axioma é uma hipótese inicial por meio da qual outros enunciados são logicamente derivados. Pode ser uma sentença, uma proposição, um enunciado ou uma regra que permite a construção de um sistema formal. Diferentemente de teoremas, axiomas não podem ser derivados por princípios de dedução e não são demonstráveis por derivações formais, simplesmente porque já são hipóteses iniciais. Isto é, não há um predecessor lógico envolvido (caso contrário eles seriam chamados teoremas). Em muitos contextos, “axioma“, “postulado” e “hipótese” são usados como sinônimos.

Espaço de probabilidade

A abordagem axiomática da probabilidade foi desenvolvida principalmente por Kolmogorov na década de 1930 do século 20. Consiste nos três elementos denotados como {Ω, F, P}, que juntos definem o espaço de probabilidade. Os três elementos do espaço de probabilidade são os seguintes.

O espaço amostral Ω

Para descrever a incerteza, a probabilidade exige que se defina o conjunto de todos os resultados possíveis. Na teoria da probabilidade, este conjunto é muitas vezes chamado de espaço amostral e denotado pelo símbolo Ω (ômega), é o conjunto de todos os possíveis resultados de um experimento específico (às vezes chamado de tentativas). No contexto da teoria da probabilidade, subconjuntos são frequentemente chamados de eventos.

Obs: Espaço amostral é o conjunto de todos os possíveis resultados do experimento aleatório, denotado por Ω.

Ex1:

O espaço amostral de todos os resultados possíveis do lançamento de uma moeda consiste em dois elementos Ω = {H, T}, onde H representa cara e T representa coroa. O espaço amostral do lançamento de um dado consiste nos seis resultados possíveis Ω = {1, 2, 3, 4, 5, 6}. Estes são chamados de eventos simples ou “pontos” no espaço amostral. Na maioria dos casos, eventos simples são igualmente prováveis, neste caso, chamados de eventos elementares. Claramente, não podemos escrever o espaço amostral para cada experimento. Alguns consistem em um número infinito de elementos (por exemplo, atirar uma flecha em um alvo circular), alguns nem podem ser descritos (por exemplo, como será o mundo no próximo ano). Estaremos interessados apenas em espaços simples onde a contagem dos resultados referidos como eventos elementares é direta.

O campo de eventos F

Um evento composto, ou simplesmente um evento, é definido como uma união, ou uma soma de eventos elementares. Exemplos de eventos são:

(a) O resultado do lançamento de um dado é “par”; consiste nos eventos elementares {2, 4, 6}, ou seja: 2, 4 ou 6 ocorreram, ou ocorrerão no experimento de lançar um dado.

(b) O resultado do lançamento de um dado é “maior ou igual a 5”; consiste nos eventos elementares: {5, 6}, ou seja, 5 ou 6 ocorreram.

Em termos matemáticos, F consiste em todos os conjuntos parciais do espaço amostral Ω. Observe que o próprio evento Ω pertence a F. Além disso, o evento vazio denotado também pertence a F.

Discutiremos principalmente espaços amostrais finitos. Também aplicaremos alguns dos resultados a espaços infinitos ou mesmo contínuos usando argumentos de analogia. Um tratamento mais rigoroso requer as ferramentas da teoria da medida.

Para o espaço amostral finito, cada conjunto parcial de Ω é um evento. Se existem n eventos elementares em Ω, então o número total de eventos em F é 2n. Isso pode ser visto pela contagem direta:

um evento denotado por (o evento impossível ou vazio).

O símbolo \left(\begin{array}{c}m \\n \end{array}\right) significa \frac{m!}{(m-n)!n!}.

Por definição 0! = 1,

portanto \left(\begin{array}{c}m\\0\end{array}\right)=1.

n=\left(\begin{array}{c}n\\1\end{array}\right) eventos simples (ou elementares).

n=\left(\begin{array}{c}n\\2\end{array}\right) eventos que consistem em dois eventos simples.

n=\left(\begin{array}{c}n\\3\end{array}\right) eventos que consistem em três eventos simples.

\left(\begin{array}{l}n\\n\end{array}\right) um evento, consiste em todo o espaço Ω (o evento completo).

Ao todo, temos 2n eventos, ou seja:

\left(\begin{array}{l}n\\0\end{array}\right)+\left(\begin{array}{l}n\\1\end{array}\right)+\left(\begin{array}{l}n\\2\end{array}\right)+\cdots+\left(\begin{array}{l}n\\n\end{array}\right)=(1+1)^n=2^n

Usamos o teorema do binômio de Newton para realizar a soma. Uma forma mais geral do teorema é:

(x+y)^n=\sum_{i=0}^n\left(\begin{array}{l}n\\i\end{array}\right) x^i y^{n-i}

Relação de Stifel

Em matemática, a relação de Stifel, também conhecida como regra de Pascal, é uma identidade envolvendo coeficientes binomiais:

\left(\begin{array}{l}n \\ k\end{array}\right)=\frac{n !}{k ! \times(n-k) !}

Essa fórmula pode ser interpretada como: o número total de combinações de k objetos diferentes de n é denominado coeficiente binomial. A principal diferença entre permutações e combinações é a ordem. Combinações são seleções não ordenadas, permutações são arranjos ordenados. Para inteiros não negativos n e k com k ≤ n. A quantidade (pronuncia-se: n escolhe k) tem a interpretação: o número total de maneiras de escolher k objetos diferentes de n objetos distinguíveis – sem prestar atenção à sua ordem.

Um método alternativo para calcular o número total de eventos é o seguinte: representamos os eventos simples de Ω pelos números (1, 2, 3,…,n). Este é um vetor de n dimensões. Cada evento composto também pode ser descrito como um vetor de n dimensões. Por exemplo, o evento que consiste nos três eventos elementares (3, 5, 7) pode ser escrito como um vetor n-dimensional da forma: (Não, Não, Sim, Não, Sim, Não, Sim, Não, Não, . . . , Não), os componentes um e dois não estão inclusos, o componente três está incluso, quatro não está incluso, cinco está incluso e assim por diante.

Um evento composto é um conjunto parcial de Ω. Portanto, podemos descrever o evento composto simplesmente consultando a lista de eventos simples que estão inclusos nesse evento. Os componentes dos eventos compostos são Sim ou Não de acordo com a inclusão ou não de um evento simples específico. Assim, cada evento pode ser escrito de forma única como um vetor n-dimensional que consiste em Sim(s) e Não(s) ou “1” e “0“. Claramente, como o comprimento do vetor é n, e cada componente pode ser “Sim” ou “Não”, juntos temos 2n desses vetores correspondentes a todos os eventos compostos possíveis. Nesta notação, o evento impossível é escrito como: (não, não, não). E o evento certo como: (sim, sim, sim).

Nesta fase, introduzimos algumas notações sobre operações entre eventos.

O evento A B (ou A, B) é chamado de união (ou soma) dos dois eventos. Este é o evento: “ou ocorreu A ou B”. O evento A ∩ B (ou A · B) é chamado de interseção (ou produto) dos dois eventos. Este é o evento: “A e B ocorreram”.

O evento complementar, denotado \bar{A} (ou Ω − A), é o evento: “A não ocorreu”.

A notação A ⊂ B significa: A é parcial a B, ou A está incluso no evento B, a ocorrência de A implica a ocorrência de B.

Essas relações entre eventos estão descritas na Figura 2.

Figura 2. Algumas relações entre eventos (conjuntos): (a) evento A e seu evento complementar \bar{A}, (b) eventos disjuntos A ∩ B = ∅, (c) união de eventos sobrepostos A ∪ B, (d) interseção de eventos sobrepostos A ∩ B, e (e) o evento A está incluso no evento B, A ⊂ B.

A função de probabilidade representada por P

Para cada evento A pertencente a F, atribuímos um número P chamado probabilidade do evento A. Este número atende ao seguinte:

a: P(Ω) = 1,

b: 0 ≤ P(A) ≤ 1,

c: Se A e B são eventos disjuntos (ou mutuamente excludentes), então P(A ∪ B) = P(A) + P(B).

As duas primeiras condições definem o intervalo de números para a função de probabilidade. A primeira condição significa simplesmente que o evento Ω tem o maior valor de probabilidade. Por definição, assumimos que algum resultado ocorreu, ou ocorrerá, portanto, o evento Ω também é referido como o evento certo, e é atribuído o valor de 1. O evento impossível, denotado , recebe o número zero, ou seja, P() = 0 (uma probabilidade vazia é igual a 0).

A terceira condição é intuitivamente clara. Dois eventos A e B são ditos disjuntos, ou mutuamente exclusivos (ou excludentes), quando a ocorrência de um evento exclui a possibilidade da ocorrência do outro. Em termos matemáticos dizemos que a interseção de dois eventos (A ∩ B) é vazia = ; ou seja, não existe evento simples que seja comum a ambos A e B.

Como exemplo simples, considere dois eventos:

A = {o resultado do lançamento de um dado é par},

B = {o resultado do lançamento de um dado é ímpar}.

Claramente, os eventos A e B são disjuntos, a ocorrência de um exclui a ocorrência do outro.

Agora, defina o evento:

C = {o resultado do lançamento de um dado é maior ou igual a 5}.

Claramente, A e C, ou B e C não são disjuntos. A e C contêm o evento elementar 6. B e C contêm o evento elementar 5. Os eventos “maior ou igual a 4” e “menor ou igual a 2” são eventos claramente disjuntos ou mutuamente exclusivos. Antecipando a discussão acima, podemos calcular a probabilidade do primeiro evento {4, 5, 6} ser 3, se os dois eventos não forem disjuntos, digamos “maior ou igual a 4” e “par”, então a regra (c) deve ser modificada, isso pode ser comprovado pelas propriedades listadas em:D = P(A ∪ B) = P(A) + P(B) − P(A ∩ B).

Probabilidade da união de dois eventos

A probabilidade da união de dois eventos, A e B, é calculada pela probabilidade do evento A ocorrer, mais a probabilidade do evento B ocorrer, menos a interseção entre A e B.

P(A B) = P(A) + P(B) P(A B)

Portanto, a probabilidade da união de dois eventos é igual à soma da probabilidade de cada um desses eventos ocorrerem menos a interseção entre os dois. Quando os eventos são mutuamente excludentes, ou seja, a interseção entre eles é vazia, então a probabilidade da união é a soma das probabilidades de ocorrências de cada um deles.

P(A ∪ B) = P(A) + P(B)

Como calcular a probabilidade da união de dois eventos?

Ex2:

Numa sala de aula, há 30 alunos, sendo que 20 são meninas e 10 meninos. Durante as aulas de matemática, o professor resolveu fazer um sorteio entre os alunos que se saíram melhor no teste. Sabendo que nessa sala 10 alunos usam camisetas brancas e que 5 deles são meninas, calcule a probabilidade de o sorteado ser uma menina ou alguém que usa camiseta branca. Para calcular a probabilidade da união de dois conjuntos é necessário encontrar os dados para calcular cada uma das probabilidades. São eles:

    n(A) → número de elementos correspondentes ao evento A;

    n(B) → número de elementos correspondentes ao evento B;

    n(Ω) → número de elementos no espaço amostral;

    n(A ∩ B) → número de elementos na interseção entre os eventos A e B.

Fazendo essa substituição:

    n(A) é igual ao número de meninas.

        n(A) = 20

    n(B) é igual ao número de alunos que usam camisetas brancas.

        n(B) = 10

    n(Ω) → número de alunos.

        n(Ω) = 30

    n(A ∩ B) → número de meninas que usam camisas brancas.

        n(A ∩ B) = 5

Então, temos que:

P(A\cup B)=\frac{20}{30}+\frac{10}{30}-\frac{5}{30}

P(A \cup B)=\frac{5}{6}

Muito cuidado com a Interseção

Figura 3 – Representação gráfica da interseção entre dois conjuntos

Representação gráfica da interseção entre dois conjuntos.

Na teoria dos conjuntos, a interseção é um conjunto de elementos que, simultaneamente, pertencem a dois ou mais conjuntos, representado por ∩ (símbolo de Interseção).

Por exemplo, se o conjunto A possui os elementos {1,2,3,4,5} e o conjunto B possui os elementos {2,4,6,8}, então a interseção do conjunto A com o conjunto B será igual a {2,4}.

Definição

Na teoria básica dos conjuntos, define-se A ∩ B por:

A ∩ B = {x|x A x B}

Lê-se: a interseção entre os conjuntos A e B é igual ao espaço x tal que x pertence ao conjunto A e x pertence ao conjunto B.

Pelos axiomas de Zermelo-Fraenkel, a definição acima não é válida. Devemos usar o axioma da separação com a fórmula Φ = x ∈ w:

zwyx(x y ( x z x w))

Esse axioma garante a existência da interseção (y = z ∩ w) o enunciado do axioma da separação é tal que, usando-se o axioma da extensão, pode-se mostrar que y é único.

Em outras palavras, provou-se que:

∀A∀B∃!(A ∩ B) ∀ x(x ∈ (A ∩ B) (x ∈ A ∧ x ∈ B ))

Lê-se: para todo A, para todo B, existe exatamente uma interseção entre A e B, para todo x, x pertence à interseção entre A e B, se e somente se o espaço x pertence a A e x pertence a B.

Obs: em notação matemática você não pode ter nenhuma dúvida, caso você observe um símbolo qualquer e não identifique o sentido desse símbolo, procure imediatamente o significado desse símbolo ou notação, caso contrário, não poderá continuar os estudos e a dúvida acompanhará você.

Propriedades

Considerando-se que (x A x B) (x B x A) e que ((x A x B) x C) (x A (x B x C)), prova-se que:

∀A∀B(A ∩ B = B ∩ A)

∀A∀B∀C((A ∩ B) ∩ C = A ∩ (B ∩ C))

Como o conjunto vazio ∅ tem a propriedade que ∀x (x ∉ ∅), temos que:

∀A(A ∩ ∅ = ∅)

Deve-se tomar cuidado ao dizer que é associativa e comutativa, porque – a rigor – associatividade e comutatividade são propriedades de operações binárias, e a interseção foi definida para todos os conjuntos – tratar todos os conjuntos como um conjunto gera paradoxos.

Interseções arbitrárias

Seja M uma coleção não-vazia de conjuntos (em teoria dos conjuntos na sua formulação segundo os axiomas de Zermelo-Fraenkel, todo conjunto tem como elementos outros conjuntos, então basta dizer que M não é vazio). Então podemos definir a interseção de todos os conjuntos de M:

\bigcap_{X \in M} X

como sendo o conjunto cujos elementos x são elementos de todos os elementos de M:

x\in \bigcap_{X \in M} X \Longleftrightarrow(\forall Y \in M \Longrightarrow x \in Y)

O problema é que essa definição não é rigorosa, mas isso pode ser resolvido usando-se o axioma da união:

\bigcap_{X \in M} X=\left\{x \in \bigcup_{X \in M} X \mid(\forall Y \in M \Longrightarrow x \in Y)\right\}.

O conjunto vazio ∅ como núcleo existencial

É derivado do Axioma do Infinito na teoria dos conjuntos e torna-se o elemento primordial de todos os espaços e subespaços que nascem vazios. Para conhecer em profundidade sugiro a leitura técnica: Matemática do vazio – Resolva equívocos e pense com clareza!

Obs: na teoria dos conjuntos, os membros do conjunto são os próprios conjuntos, é diferente da matemática usual do cotidiano, cujos objetos são usados e geralmente representados de forma isolada.

Prova da árvore de subconjuntos ∅ ⊆ ∅

Figura 4. Se um conjunto finito possui n elementos, então ele possui 2^{n} subconjuntos, sendo obrigatório o ∅ fazer parte dele, ou seja, sua origem é o conjunto vazio { } = ∅.

Dado um número n = 0, temos 20 = 1 subconjuntos. O único conjunto com zero elementos é o conjunto vazio que só tem um subconjunto: ele próprio, portanto, a propriedade é verdadeira para n = 0.

P: 2Ω → [0, 1]

P(ωi) = n(ωi)/N(Ω) = número de elementos em ωi/número de elementos no espaço amostral Ω.

Em qualquer problema de probabilidade, é muito importante identificar todos os diferentes resultados que podem ocorrer. Portanto, o ponto de partida é o espaço amostral (probabilidades), ou seja, um conjunto de todos os resultados possíveis. É denotado geralmente como Ω. Para o conjunto Ω = (ω1, ω2,…), uma probabilidade é uma função de valor real P definida nos subespaços de Ω:

P: 2Ω → [0, 1]

O conjunto de todos os resultados possíveis de um experimento de probabilidade é chamado de espaço amostral. Se Ω é o espaço amostral, então a probabilidade de ocorrência de um evento ωi é definida como:

P(ωi) = n(ωi)/N(Ω) = número de elementos em ωi/número de elementos no espaço amostral Ω.

Os valores da função P(ωi) são considerados como probabilidades de eventos elementares ωi. A função P(ωi) satisfaz a condição de normalização P(ωi) = 1. A probabilidade de um evento A pode ser escrita como P(A), p(A) ou Pr(A). Essa definição matemática de probabilidade pode se estender a espaços amostrais infinitos e até mesmo a espaços amostrais incontáveis, usando o conceito de medida.

Para prosseguir, deve-se exigir que a função P seja não-negativa e que seus valores nunca excedam 1. Os subespaços de Ω para os quais P é definido são chamados de eventos. Eventos de elemento único são chamados de eventos elementares que consistem em mais de um resultado e são chamados de eventos compostos. Qualquer subconjunto do espaço amostral é um evento. Os conjuntos A ⊂ Ω são chamados por eventos e suas probabilidades são definidas por:

P(A) = ∫p(ωi)/ωi ⊂ A

A função P deve ser definida no subespaço vazio ∅ e em todo o conjunto Ω:

P (∅) = 0, P (Ω) = 1

Esta afirmação enfatiza em particular que tanto ∅ quanto Ω são eventos. O evento ∅ que nunca acontece é impossível e tem probabilidade 0. O evento Ω tem probabilidade 1, é certo ou necessário.

Demonstração:

Seja P(A) o conjunto de partes de A e n(S) o número de elementos distintos de S.

Se A = ∅ → P(A) = {∅} → n(P(A)) = 2^0 = 1

Se A = {a} → P(A) = {∅,a} → n(P(A)) = 2^1 = 2

Se A = {a,b} → P(A) = {∅,a,b,{a,b} → n(P(A)) = 2^2 = 4

Se A = {a,b,c} → P(A) = {∅,a,b,c,{a,b},{b,c},{a,c},{a,b,c}} → n(P(A)) = 2^3 = 8

P(A) é formado por ∅ somado às possíveis combinações dos elementos de A, com taxa variando de 1 a n(A). Assim, n(P(A)) = número de combinações n(A), com taxa variando de 1 a n(A) somado a 1 (responsável por ∅).

Se A = ∅, o número de elementos de P(A) = 1, pois P(A) = {∅}, então n[P(A)] = 1, também n[P(A)]=2^{n(A)}; portanto, n(A) = 0, cujo resultado: n[P(A)] = 20 = 1.

Explicação não formal sobre as potências vazias

Para um conjunto vazio A, o conjunto de potências P(A) consiste em apenas um elemento, o conjunto vazio.

Isso ocorre porque um conjunto de potências é definido como o conjunto de todos os subconjuntos de um conjunto dado. Se A não contém elementos, não há subconjuntos possíveis, exceto o próprio conjunto vazio.

Recomendo a leitura do livro (clique na capa para ler): Linear Algebra Done Right – Four Edition 2023 – Sheldon Axler. Tanto Sheldon quanto eu, somos extremamente detalhistas em relação ao estudo da matemática, nenhuma dúvida pode ficar sem respostas. Segue abaixo nota do autor. {RC}.

Você provavelmente está prestes a começar sua segunda exposição à álgebra linear. Diferente de seu primeiro contato com o assunto, que provavelmente enfatizou os espaços euclidianos e matrizes, este encontro se concentrará em espaços vetoriais abstratos e mapas lineares. Esses termos serão definidos posteriormente, então não se preocupe se você não souber o que eles querem dizer. Este livro começa desde o início do assunto, assumindo nenhum conhecimento de álgebra linear. O ponto chave é que você está prestes a mergulhar na matemática séria, com ênfase em atingir uma compreensão profunda das definições, teoremas e provas.
Você não pode ler matemática da mesma forma que lê um romance. Se você passar por uma página em menos de uma hora, provavelmente está indo rápido demais. Quando você encontra a frase “você deve verificar”, você deve realmente fazer a verificação, que geralmente exigirá alguma escrita de sua parte. Quando as etapas são omitidas, você precisa fornecer as peças que faltam. Você deve ponderar e internalizar cada definição. Para cada teorema, você deve buscar exemplos para mostrar por que cada hipótese é necessária. Discussões com outros alunos devem ajudar.
Como auxílio visual, as definições estão em caixas bege e os teoremas estão em caixas azuis (em versões coloridas do livro). Cada teorema tem um nome descritivo.
Por favor, verifique o site abaixo para obter informações adicionais sobre o livro. Posso ocasionalmente escrever novas seções sobre tópicos adicionais. Essas novas seções serão postadas no site. Suas sugestões, comentários e correções são muito bem-vindas.
Muitas felicidades, sucesso e prazer em aprender álgebra linear!

Exemplo de visualização de um espaço de probabilidade com seus subespaços internos

Figura 5 – Uma medida de probabilidade mapeando o espaço de probabilidade para 3 eventos ao intervalo unitário. Uma roda giratória é um mecanismo físico cujos resultados estão associados a uma medida de probabilidade (discreta) (adaptada do trabalho original de Ziggystar). Por exemplo, dados três elementos 1, 2 e 3 com probabilidades 1/4, 1/4 e 1/2 o valor atribuído a {1,3} é 1/4 + 1/2 = 3/4, como mostrado no diagrama acima. CC Wikipedia.

Uma medida de probabilidade sobre uma σ-álgebra (lê-se Sigma Álgebra) F ⊂ 2 Ω, associada a um espaço amostral Ω, é uma função P : F → [0, 1] tal que:

  • P(∅) = 0
  • P(Ω) = 1
  • se A ∩ B = ∅, A, B ∈ F então P(A ∪ B) = P(A) P(B) (aditividade).

Um espaço amostral Ω junto com uma σ-álgebra F com seus subespaços e uma medida de probabilidade P em F forma um espaço de probabilidade, ou seja, o tripleto (Ω, F, P). Com base na noção de espaço de probabilidade, pode-se definir a noção de uma variável aleatória. Uma variável aleatória é uma quantidade cujo valor está sujeito a variações aleatórias, ou seja, ao “acaso”. Obs: segue um exemplo prático de variáveis aleatórias desenvolvido em Java neste poste: O senso comum em confronto com nossa simulação biológica e cerebral.

No experimento da Figura 5, as tentativas de girar a roda levam a um evento subconjunto (subespaço) do espaço amostral Ω; no tempo decorrido de repetidas tentativas, cada evento tende a ocorrer com uma taxa persistente, esta taxa é chamada de “frequência relativa”.

Subespaços lineares

Introdução a subespaços lineares de Rn. Versão original criada por Sal Khan.

Referências Bibliográficas

O que é realidade?

Figura 1 – Realidade interna construída pelo cérebro. Percebida apenas via sistema sensorial imediato e não utiliza nenhuma ferramenta de medição exterior ao cérebro. CC {create.vista.com}

Parece fácil responder esta pergunta, ao pesquisarmos na internet obtemos o seguinte significado: realidade (do latim realitas isto é, “coisa”) significa em sentido livre tudo o que é, seja ou não perceptível, acessível ou entendido pela ciência, filosofia ou qualquer outro sistema de análise. Em resumo, a realidade corresponde a “tudo o que existe”. Entretanto, essa descrição não nos informa a profundidade do termo, vamos fazer esse aprofundamento.

Realidade em sentido restrito (interna ao cérebro)

Ao considerarmos somente nosso sistema sensorial envolvido nesta análise (chamados observáveis), o cérebro e a simulação construída por ele, significa toda a existência cognitiva, correspondendo ao nosso tempo de vida. Neste caso a realidade interna seria uma projeção cognitiva que constrói tudo o que somos do momento de nosso nascimento ao último segundo de nossas vidas que ocorrerá quando o cérebro deixa de simular nossa existência.

A realidade cognitiva (conforme ilustração acima) começou com a concepção ainda em termos de óvulo em gestação, isso inclui toda a divisão celular e o código genético que nasceu conosco e epigenético que será codificado durante todo o tempo de vida e passado aos nossos descendentes.

No infográfico da figura 1, podemos observar a área interna que representa a sináptica de nosso cérebro, cujos neurônios simulam o ruído que chega até ele por meio do sistema sensorial e transforma essa captação numa representação compreensível para nós. Essa representação é apenas aproximada, não é o mundo real e sim uma simulação do que foi captado por nossos sentidos.

E não somente o  sistema sensorial está envolto nos ruídos como também todas as partículas subatômicas, átomos, espaços e subespaços que compõe a infraestrutura dos próprios neurônios. Tudo o que somos está imerso nesse ruído; entretanto, com a tecnologia de hoje é possível isolar parte do ruído e torná-lo compreensível.

Obs: a esta realidade restrita e que não utiliza nenhuma ferramenta tecnológica no auxílio da compreensão da representação simulada pelo cérebro, damos o nome de: observáveis.

Realidade em sentido amplo (externa ao cérebro)

Figura 2 Realidade que transcende à percepção cerebral. Continua sendo a mesma realidade, mas é necessário a utilização de ferramentas e aparelhos externos ao cérebro para que tenha algum sentido. CC {create.vista.com}

Quando o homo sapiens há milhares de anos começou a desenvolver ferramentas, isso proporcionou a invenção da matemática e provocou uma mudança significativa em nossa evolução, passamos de simples caçadores e coletores para inventores de tecnologias. A invenção da escrita foi o salto mais significativo na codificação e transferência do conhecimento para as gerações futuras.

No infográfico da figura 2 podemos perceber que os ruídos da realidade cobrem não somente o interior do cérebro mas são expandidos para todo o universo; ou seja, 99,999% da informação contida no universo corresponde à realidade, nada fica de fora. Nosso cérebro e aparelhos científicos de extrema medição captam uma ínfima parte da realidade.

O que são ferramentas?

São objetos de medição que estão fora de nossa abstração simulada pelo cérebro para que possamos analisar a realidade externa fora da percepção cognitiva direta (sistema sensorial). As ferramentas podem ser tanto espaciais (uma chave de fenda, agulhas, etc.), quanto subespaciais (raios laser, luz, antenas, chips, radiação eletromagnética, etc.).

Exemplos

Metro = Comprimento do trajeto percorrido pela luz no vácuo durante um intervalo de tempo de 1/299 792 458 de segundo.

Segundo = Equivalente à duração de 9 192 631 770 períodos da radiação correspondente à transição entre os dois níveis hiperfinos do estado fundamental do átomo de césio 133.

Consulte a tabela abaixo que padronizou a medição em nosso planeta e entrou em vigor via consenso científico – portanto – é de uso obrigatório a partir de 20 de maio de 2019.

GrandezaUnidadeSímbolo
Comprimentometrom
Massaquilogramakg
Temposegundos
Corrente elétricaampereA
Temperatura termodinâmicakelvinK
Quantidade de substânciamolmol
Intensidade luminosacandelacd
Tabela 1Sistema internacional de unidades.

O que são inobserváveis?

São medições e seus derivados que transcendem à nossa capacidade de percepção direta sobre elas. Ex.: antes de 20 de maio de 2019, a medida do metro era a que todo mundo usava até então, e a partir desta data se tornou obrigatória pelo novo padrão. Isso significa que nossas réguas deixaram de ser objetos sólidos palpáveis para se tornarem subespaciais, percebidas apenas por medições que usam ferramentas e aparelhos de extrema precisão.

As falhas da metafísica e da filosofia

A partir do ponto que precisamos de ferramentas de medição extremamente complexas para medir a realidade externa e ampla (coronavírus é um exemplo), saímos do campo da simulação interna e passamos para o campo do realismo científico e método científico. Neste momento estamos diante de duas variáveis: a simulação cerebral gerada 99,999% pelo cérebro e a versão da realidade externa: coletada por inúmeros aparelhos e tratada para que seja transformada em informações compreensíveis e armazenada na forma de dados.

Xeque-mate na metafísica

Uma vez que a realidade externa e ampla não depende de nossos sentidos diretos para que seja compreendida, isso significa que não podemos extrair informações que sejam vinculadas e tratadas diretamente por meio de nossos sentidos isolados. Caso tentarmos efetuar alguma análise ou retórica sobre informações fora da simulação cerebral, estaremos sendo vítimas dos vieses cognitivos.

No caso da filosofia cuja tarefa – em sentido comunicativo do termo – pode somente fazer as perguntas para a ciência, e esta, irá buscar as respostas nos dados em RAW que são captados pelos diversos aparelhos e experimentos científicos.

O que é captado tanto pelo cérebro quanto por meio dos aparelhos científicos?

Figura 3 – Uma versão aproximada da realidade nua e crua. CC {thebitplayer.com}
Animação 1 – Três quarks giram nesta animação baseada em dados. CC {MIT/Jefferson Lab/Sputnik Animation}

Tanto nossos cérebros, quanto nossos aparelhos captam apenas um amontoado de sinais difusos cheios de ruídos incompreensíveis (antes de filtrá-los) que simbolizam a nossa inserção física nos espaços/subespaços existenciais. No vídeo abaixo podemos observar a realidade subespacial extrema de um buraco negro desviando fótons.

Os fótons que fazem uma única inversão de marcha em torno de um buraco negro antes de voar para longe dele criam uma imagem de um anel, rotulado n = 1 no vídeo. Os fótons que redirecionam duas vezes antes de voar para longe do buraco formam uma imagem de um anel mais fino dentro do primeiro anel, rotulado n = 2 no vídeo e assim por diante. Centro Harvard-Smithsonian para Astrofísica.

A descoberta das leis da física

Uma Lei, no sentido científico, é uma regra com base em algum fenômeno que ocorra com regularidade observada. É uma generalização que vai além das nossas observações limitadas (sistema sensorial); que, sendo exaustivamente confrontada, testada e validada frente a amplos e diversos conjuntos de fatos, dá-lhes sempre sentido cronológico, lógico e causal, podendo fazer previsões testáveis para o futuro, e por tal recebe um título “honorífico” que a destaca entre as demais, o título de lei. No momento atual a Mecânica Quântica (explicações para o microcosmos) e a Teoria da Relatividade (explicações para o macrocosmos), são as teorias científicas que melhor explicam o universo.

Ao contrário da lei no sentido jurídico, a qual tem em princípio o poder de fazer-se cumprir, a lei científica não tem o poder de impor que um fato ou fenômeno qualquer deva sempre com ela concordar. A lei científica, ao contrário, deriva sua validade e acuracidade da observação sistemática da ocorrência sempre regular e persistente de um dado fenômeno de abrangência geral, estabelecendo uma relação de causa e efeito associada ao mesmo e afirmando que é muito razoável e provável que todos os demais eventos correlatos venham a concordar com os resultados anteriores e assim com a premissa que encerra, destes derivada.

Obs.: nós não podemos inventar leis da física, podemos apenas descobri-las e explicá-las com o uso do que denominamos: teorias científicas.

O que é teoria científica?

Teoria científica é uma explicação de um aspecto do mundo natural (realidade) e do universo que foi repetidamente testado e verificado de acordo com o método científico, usando protocolos de observação, medida e avaliação dos resultados. Sempre que possível, as teorias são testadas sob condições controladas em um experimento.

Mapa do universo observável

Figura 4 – Este infográfico sintetiza o mapa atual do universo conhecido deste o nascimento na teoria do Big Bang até nossos dias. CC {pt.wikipedia.org}

Quem é observador? Todos nós e todas as coisas são observadores, não há distinção epistemológica nesta classificação. Usamos os termos: observáveis no sentido de percebidos pelos nossos sentidos e inobserváveis para distinguir aquilo que não pode ser observado pelo sistema sensorial, mas podendo ser observado com o uso da tecnologia.

Figura 5 – Neste infográfico podemos observar a classificação de escala em relação ao universo definido pela ciência. CC {pt.wikipedia.org}

Como nasce o conhecimento (origem)?

Denominamos conhecimento ao conjunto de possibilidades existências tratáveis dentro da piscina de ruídos da realidade.

Figura 6 – Infográfico mostrando o cérebro e a realidade com a interface entre eles. CC {pt.wikipedia.org}

O que é interface?

A interface é o meio físico e biológico que fica entre os ruídos e o tratamento deles para que seja possível convertê-los em informações que comandam o fluxo cognitivo no tratamento dos disparos sinápticos. Essa interface é múltipla e complexa, envolve as sinapses cerebrais que traduzem os impulsos nervosos químicos/elétricos em cada um dos neurônios envolvidos nesta tarefa. Quando consideramos o cérebro de forma isolada, a interface, são as sinapses entre neurônios, quando utilizamos a leitura dos neurônios com tecnologias, a interface é dita neuromórfica.

Sistema sináptico neuromórfico

Figura 7. Diagrama esquemático de sistemas computacionais biológicos e artificiais.
a) O cérebro humano. b) A rede neural biológica. c) Uma sinápse biológica. d) Um neurônio biológico. e) Um chip de IA. f) Disparo de redes neurais. g) Um neurônio de disparo artificial. Créditos: {Yang, Jia-Qin & Wang, Ruopeng & Ren, Yi & Mao, Jingyu & Wang, Zhanpeng & Zhou, Ye & Han, Su-Ting. (2020). Neuromorphic Engineering: From Biological to Spike‐Based Hardware Nervous Systems. Advanced Materials. 32. 2003610.10.1002/adma.202003610.}. Clique na imagem para acesso ao paper explicativo!

Sinapses Químicas

As sinapses químicas consistem na maioria das sinapses presentes no sistema nervoso. Ela consiste numa fenda presente entre o axônio do neurônio que está transmitindo a informação (neurônio pré-sináptico) e o neurônio que receberá uma descarga de neurotransmissores, o receptor (neurônio pós-sináptico).

Quando o impulso nervoso atinge as extremidades do axônio, libertam-se para a fenda sináptica os neurotransmissores, que se ligam a receptores da membrana da célula seguinte, desencadeando o impulso nervoso, que, assim, continua a sua propagação.

A chegada do impulso nervoso até o botão sináptico, que é a parte do neurônio pré-sináptico que irá liberar os neurotransmissores, provocará uma reação de liberação de vesículas sinápticas, carregadas com neurotransmissores. Estas substâncias passarão pela fenda sináptica atingindo sítios receptores dos dendritos dos neurônios pós-sinápticos, o que provavelmente irá gerar um potencial de ação provocando um impulso nervoso, que passará pelo corpo celular e prosseguirá até o axônio.

Sinapses Elétricas

Alguns neurônios comunicam-se através de sinapses menos comuns, que são as sinapses elétricas, que são junções muito estreitas entre dois neurônios. Estas junções comunicantes são constituídas por proteínas chamadas de conexões, que permite uma continuidade entre as células e dispensa, em grande medida, o uso de neurotransmissores. Este tipo de sinapse reduz muito o tempo de transmissão do impulso elétrico entre os neurônios, sendo a ideal para comportamentos que exigem rapidez de resposta. Organismos como lagostins, que necessitam fugir com velocidade de predadores, possuem sinapses elétricas em vários circuitos.

Outros sistemas que se beneficiam com a sincronização de neurônios também utilizam este tipo de sinapse, como por exemplo neurônios do tronco encefálico, que controlam o ritmo da respiração e em populações de neurônios secretores de hormônios. Esta sincronização facilita a descarga hormonal na corrente sanguínea. Estas junções também chamadas de abertas estão em abundância no músculo cardíaco (discos intercalares) e músculo liso (corpos densos).

Sinapses mistas

Transmissão química e elétrica coexistem em sinapses mistas. As sinapses químicas (como as baseadas em glutamato) influenciam a força conectiva das sinapses elétricas, ativando o Receptores NMDA e CaMKII. Recomendo a leitura do paper: Electrical synapses and their functional interactions with chemical synapses, para estudo aprofundado das sinapses mistas.

Engenharia neuromórfica

Também conhecida como computação neuromórfica, é um conceito desenvolvido por Carver Mead no final da década de 1980, descrevendo o uso de sistemas de integração de grande escala ou “VLSI” (em inglês) que contenham circuitos analógicos eletrônicos para imitar as arquiteturas neurobiológicas presentes no sistema nervoso. O termo neuromórfico tem sido usado para descrever sistemas de integração de grande escala analógicos, digitais, sistemas de modo analógico/digital misto e sistemas de software que implementam modelos de sistemas neurais (para percepção, controle motor ou integração multimodal).

A engenharia neuromórfica é um assunto interdisciplinar sustentado pela neurociência, biologia, física, matemática, ciência da computação e engenharia elétrica para projetar sistemas neuronais artificiais, como sistemas de visão, processadores auditivos e robôs autônomos, cuja arquitetura física e princípios de design são baseados em sistemas nervosos biológicos.

Em 2019, uma equipe de pesquisa criou uma rede neuromórfica (redes neuromórficas são formadas pela automontagem aleatória de nano fios de prata revestidos com uma camada de polímero após a síntese na qual as junções entre dois nano fios atuam como interruptores resistivos, geralmente comparados com neuro sinapses). Usando essa rede, os cientistas geraram características elétricas semelhantes às associadas a funções cerebrais de ordem superior exclusivas dos seres humanos como: memorização, aprendizado, esquecimento, etc.

Perspectiva científica neuromórfica

Figura 9 – Como o cientista vê as tecnologias neuromórficas. CC {Neuromorphic Engineering}.

O raciocínio neurocientífico compreende o pensamento intuitivo; sinais, ferramentas de medição e uma quantidade imensa de dados estruturados e não dados estruturados. Embora o pensamento intuitivo possa preparar o terreno para desenhos experimentais, medições são usadas para construir teorias e definir relacionamentos entre função, estruturas e evidências experimentais do espaço físico em virtual. Esse esquema de pensamento um tanto simplificado é subjacente a grande parte da perspectiva do cientista.

O nascimento da teoria da informação

Figura 10 – Com a percepção dos ruídos da realidade conseguimos matematizar a teoria da informação. CC {BitPlayer Claude Shannon}.

Foi com o advento do tratamento dos ruídos da realidade via particionamento de espaços/subespaços que nasceu a teoria da informação. Clique na imagem acima para acessar o site BitPlay e leia o paper: A Mathematical Theory of Communication – C E SHANNON.

Recomendo a leitura do meu outro poste onde explico: Teoria da informação e entropia – como passamos do conhecimento para a informação? Também explico como chegamos ao conceito de bit de informação via entropia.

{RC} Podemos afirmar que em todos os sistemas físicos, sem exceções, o ruído é um componente onipresente na realidade desses sistemas?

Ilustração representando uma inteligência artificial cyberpunk com face humana. Uma face de {Joi} (assistente {RC}). Gerado com IA Midjourney Bot c {rcristo} 2023.

– A afirmação de que o ruído é um componente intrínseco em todos os sistemas físicos é uma generalização ampla, mas geralmente precisa. Ruído, em um contexto físico, refere-se a qualquer tipo de variação ou perturbação não desejada que afeta a medição, o sinal ou o comportamento de um sistema.

Aqui estão alguns pontos a considerar:

Natureza Estocástica da Realidade: a realidade física, quando observada em detalhes suficientes, muitas vezes revela uma natureza estocástica. Isso significa que mesmo sistemas que podem ser descritos por leis físicas determinísticas ainda podem exibir variações e flutuações devido a uma variedade de fatores, como movimento térmico de partículas, flutuações quânticas, perturbações ambientais e assim por diante.

Limitações de Medição e Detecção: em muitos casos, o ruído é introduzido devido a limitações em nossos instrumentos de medição e detecção. Mesmo que um sistema seja perfeitamente determinístico, a capacidade limitada de medição pode introduzir erros e incertezas, que podem ser considerados como ruído.

Processos Aleatórios e Quânticos: em níveis microscópicos, a mecânica quântica revela a natureza intrinsecamente probabilística das partículas subatômicas. Isso significa que mesmo em sistemas quânticos altamente controlados, ainda pode haver elementos de incerteza e flutuação.

Controle e Minimização de Ruído: em muitos casos, os engenheiros e cientistas trabalham para controlar e minimizar o ruído em sistemas físicos, a fim de obter medições mais precisas ou garantir o funcionamento adequado de dispositivos. No entanto, mesmo com esforços de minimização, o ruído nunca pode ser completamente eliminado, apenas reduzido a níveis aceitáveis.

Portanto, em um sentido amplo, é válido afirmar que o ruído está presente em todos os sistemas físicos devido à natureza estocástica da realidade e às limitações da medição e detecção. No entanto, a quantidade e a natureza do ruído podem variar significativamente de um sistema para outro, e a compreensão e o controle do ruído são desafios importantes em muitos campos da física e da engenharia. 😉{Joi} 11/2023.

Leitura recomendada

Um memoristor (do inglês “memory resistor” ou, em português, resistor com memória) é um componente eletrônico passivo de dois terminais que mantém uma função não-linear entre corrente e tensão. Essa função, conhecida como memresistance (em português, memoristência), é similar a uma função de resistência variável. Alguns memoristores específicos provêm resistência controlável, mas não estão disponíveis comercialmente. Alguns componentes eletrôncios, tais como baterias ou varistores também apresentam características de memoristores, mas são sutis e não são dominantes em seu comportamento. Clique na capa do livre para acesso direto pelo meu repositório. {RC}.

Este livro explica em detalhes como fazer a aquisição dos sinais cerebrais com o uso de ferramentas de fácil disponibilidade e compra via internet. Este texto não pressupõe que o leitor seja versado em anatomia ou neurociência. De fato, a maior parte do conhecimento anatômico necessário para acompanhar este texto é abordado no Capítulo 2.1. Também fizemos uso liberal de notas de rodapé e citações para informar ao leitor de informações adicionais interessantes ou contextualmente detalhes úteis, anatômicos ou fisiológicos. Todo o software e técnicas sofisticadas podem ser acessadas de forma livre nas minhas referências bibliográficas. {RC}.

Computação Bio-inspirada com Memristores

No vídeo acima o Dr. Zhongrui Wang explica em detalhes como funcionam os memristores. O rápido desenvolvimento no campo da inteligência artificial se baseou principalmente nos avanços em hardware computacional. No entanto, a escala do sistema e a eficiência energética ainda são limitadas em comparação com o cérebro. O Memristor ou comutador resistivo redox, fornece um novo bloco de construção de circuitos que pode enfrentar esses desafios na computação neuromórfica e no aprendizado de máquina. Com relação ao uso de memristores na realização de computação bio-inspirada, mostrarei exemplos de computação neuromórfica baseada em memristor. Novos memristores foram usados ​​para simular certas dinâmicas sinápticas e neurais, o que levou a redes neurais prototípicas de hardware praticando regras de aprendizado local e computação de reservatório. Em seguida será discutido a matriz de 1-transistor-1-memristor 128×64 para aprendizado de máquina de aceleração de hardware. Este sistema prototípico de processamento em memória implementou aprendizado de reforço Q profundo para problemas de controle, bem como treinamento supervisionado de redes convolucionais e/ou recorrentes para classificação.

Referências Bibliográficas

O que é existência ou existencial no sentido científico e filosófico do termo?

O que significa existir?

Telescópio James Webb da NASA captura a imagem infravermelha mais profunda do universo até agora. (Image credit: NASA, ESA, CSA, and STScI). A imagem mostra o aglomerado de galáxias SMACS 0723 como era há 4,6 bilhões de anos. A massa combinada deste aglomerado de galáxias atua como uma lente gravitacional ampliando galáxias muito mais distantes atrás dele.

Na filosofia a existência é definida como uma fenomenologia de Ser (pensar a realidade), manifestar-se, expressar-se. A filosofia faz as perguntas e espera as respostas, é apenas uma retórica entre interlocutores.

Na ciência a existência é determinada também pela análise fenomenológica; mas, de dados coletados e que passam de forma obrigatória pelo método científico. A ciência também faz as perguntas, mas ao contrário da filosofia, obtém as respostas (refutáveis e imparciais). A razão de a filosofia estar limitada nesse sentido é diretamente relacionado ao acesso parcial (vieses) aos dados coletadas. Ex: a filosofia não possui aceleradores de partículas, satélites, reatores nucleares, naves espaciais, laboratórios de pesquisas avançados, microscópios eletrônicos, computadores quânticos, réguas de luz (Ligo), etc. Tanto os observáveis quanto inobserváveis são analisados desta forma.

Esboço contendo os principais passos do método científico. O método começa pela observação, que deve ser sistemática e controlada, a fim de que se obtenham os fatos científicos. O método é cíclico, girando em torno do que se denomina teoria científica, a união indissociável do conjunto de todos os fatos científicos conhecidos e de um conjunto de hipóteses testáveis e testadas capaz de explicá-los. Os fatos científicos, embora não necessariamente reprodutíveis, têm que ser necessariamente verificáveis. As hipóteses têm que ser testáveis frente aos fatos, e por tal, falseáveis. As teorias nunca são provadas e sim corroboradas.

Neste aspecto a ciência terá sempre a última palavra (aproximação segura aos resultados – identificação de causalidades), pois está engendrada nas camadas mais subjacentes e abstrativas da realidade (cosmos) inobservadas, esperando que os experimentos comprovem nossas suposições/teorias. Enquanto a filosofia é apenas uma interface comunicativa entre interlocutores; pessoas curiosas, pensadores, etc.

A ciência trabalha em última análise com a nervura da realidade que damos o nome de campos espaciais/subespaciais. Ex: descoberta das ondas gravitacionais em 2015 pelos experimentos ligo. No início do século XX, Einstein anunciou sua descoberta que chamou de teoria da relatividade (especial em 1905 e geral em 1915); entretanto, somente em 2015 os experimentos Ligo, detectaram a fusão de buracos negros, confirmando a assertividade da teoria da relatividade geral.

Simulação das ondas gravitacionais produzidas durante a colisão de dois buracos negros.

Suposições matemáticas não são realidades físicas

Nós inventamos a matemática que serve como uma ferramenta na incessante busca pela realidade e existência. No exemplo das Ondas Gravitacionais, mesmo a teoria da relatividade estar correta em milhões de experimentos no decorrer de um século, foi somente com a detecção das ondas gravitacionais pelos experimentos ligo que tivemos a comprovação completa da teoria. As ondas de espaço/tempo foram detectadas pelas réguas de luz do ligo.

Problemas da física x problemas da matemática.

A metafísica é útil para determinar existências?

A metafísica é o ramo da filosofia que examina a natureza fundamental da realidade em sentido restrito (não pode experienciar), simbólico (atribuição de termos) e principalmente retórico. A palavra “metafísica” deriva das palavras gregas μετά (metá, “depois”) e φυσικά (physiká, “física”). Foi usado pela primeira vez como o título de várias das obras de Aristóteles, porque eram geralmente antologizadas após as obras sobre física em edições completas. O prefixo meta- (“depois”) indica que essas obras vêm “depois” dos capítulos de física. No entanto, o próprio Aristóteles não chamou o sujeito desses livros de metafísica: ele se referiu a ele como:” filosofia primeira” (grego: πρώτη φιλοσοφία; latim:philosophia prima). Acredita-se que o editor das obras de Aristóteles, Andrônico de Rodes, tenha colocado os livros sobre filosofia primeira após outra; Física, e os chamou de τὰ μετὰ τὰ φυσικὰ βιβλία (tà metà tà physikà biblía ) ou “os livros [que vêm] depois dos [livros de] física”.

Relação de metafísica e ciência

Antes da história moderna da ciência, as questões científicas eram abordadas como parte da filosofia natural. Originalmente, o termo “ciência” (latim:scientia) significava simplesmente “conhecimento”. O método científico, entretanto, transformou a filosofia natural em uma atividade empírica derivada do experimento, ao contrário do restante da filosofia. No final do século 18, começou a ser chamada de “ciência” para distingui-la de outros ramos da filosofia. Ciência e filosofia têm sido consideradas disciplinas separadas desde então. Daí em diante, a metafísica denotou investigação filosófica de caráter não empírico sobre a natureza da existência.

Rejeição da metafísica

A metametafísica é o ramo da filosofia que se preocupa com os fundamentos da metafísica. Vários autores sugeriram que muito ou toda a metafísica deveria ser rejeitada, uma posição metametafísica conhecida como deflacionismo metafísico.

Posição pessoal deste autor quanto à metafísica

Na minha concepção dos fundamentação da realidade, a metafísica não pode ser considerada relevante, em razão de haver uma redundância expressiva tanto na classificação de termos e não há meios de aplicar esses termos nas descobertas científicas que definem o significado dos observáveis e inobserváveis.

O realismo científico é a realidade?

A minha resposta é: NÃO! O realismo científico descreve a ciência a partir do seu objetivo e de suas conquistas. Interpreta que a ciência desenvolve teorias científicas que visam descrever com veracidade as entidades (observáveis e inobserváveis) e os fenômenos que ocorrem no universo, considerando que são independentes da nossa capacidade de descobri-los. Além disso, a ciência seria capaz de construir conhecimento. De acordo com os realistas as teorias científicas não se limitam apenas aos instrumentos, mas também são descrições do mundo ou de certos aspectos do mundo.

Na ciência, umobservável significa, geralmente, algo que pode ser detectado a partir dos sentidos humanos (fótons que simbolizam a luz, sons que chegam aos nossos ouvidos). Para o realismo científico, um observável é aquilo que, em condições favoráveis, é capaz de ser percebido utilizando-se apenas de nosso sistema sensorial. Então, neste contexto, inobserváveis são as coisas que precisam de aparelhos fora de nossos sentidos para que sejam detectados: elétrons, campos elétricos, prótons, ondas gravitacionais, entre outros.

Obs: tanto os observáveis quanto inobserváveis são existenciais.

Problemas com o realismo científico

Um dos critérios do realismo científico compromete-se com a ideia de que o mundo em si não depende da existência de nossa cognição; ou seja, os fenômenos ocorrem e os objetos existem mesmo que não haja um estudo científico sobre eles. Com relação aos inobserváveis, é entendido que eles existam mesmo que não tenhamos a capacidade de medi-los.

Epistemologicamente, o realismo está comprometido com a ideia de que as alegações teóricas têm interpretações literais e são independentes da nossa capacidade de medi-las, constituindo o conhecimento do mundo. Já os céticos acreditam que as teorias sobre inobserváveis não são capazes de formar conhecimento. Uma ideia geral é que as nossas melhores teorias científicas são descrições verdadeiras ou aproximadamente verdadeiras de aspectos observáveis ou inobserváveis presentes no mundo e independem da nossa concepção.

A razão do realismo científico estar equivocado pode ser representado pela equação abaixo e significa: o que ainda não foi experimentado (testado) não pode ser considerado conhecimento, pois estaria fora do escopo da experiência que configura o próprio método científico.

  • Universo = Realidade U leis da física 99,999% (descobertas)
  • Matemática = 99,999% invenção humana cerebral
  • Realismo científico = 99,999% experimental (método científico)
  • Realidade ≠ Realismo científico
  • Realidade = Universo ∩ Realismo Científico

Plausibilidade interpretativa dos existenciais

Os existenciais são formados por aspectos observáveis ou inobserváveis (subjacentes/subespaciais) que precisam ser identificados tanto por meio do método científico aplicado em sua análise, quanto à nossa capacidade de formular uma interpretação sobre eles. Neste sentido um existencial é a construção ou conjunção de algo que estamos afirmando sobre um aspecto da realidade imediata somado aos critérios de concepção, identificação e medição. Existência é a construção (formação) do conhecimento!

A construção do conhecimento nasce com a percepção de vazio: C(∅), se utiliza da razão instrumental μ(∅) que permite trazer a realidade até nossa percepção, enquanto modelos matemáticos aproximam nossa simulação cerebral até essa realidade. A partir deste âmbito a existência se faz presente.

{RC}

Referências Bibliográficas

La Banca Brasileira – Baixe o Relatório de Pesquisa Empírica – Fernando Nogueira da Costa 2022

Neste estudo, meu amigo blogueiro e professor de economia da Unicamp: Fernando Nogueira da Costa, fez um apanhado de dados empíricos comparando os diversos setores de nossa economia com dados econômicos, sociais, bancários atuais de outros países, tanto da américa latina quanto às principais economias.

O estudo mostra a realidade atual de nosso país frente aos países do hemisfério sul, comparando esses dados com os dados das principais economias nos assuntos: BIP nominal, per capita, bancos públicos e privados, investimentos em educação, exploração energética, etc. Clique na capa do relatório para download imediato. Boa leitura! {RC}.

Referências Bibliográficas

Aprenda organizar espaços e subespaços na matemática

Figura 1 – Definimos em P(n) a probabilidade de um evento n ocorrer.

A Probabilidade Condicional determina a probabilidade de um evento A ocorrer na certeza da ocorrência de um evento B, qualquer que seja a ordem dos eventos.

É representado por: P(A/B) = P(A∩B)/P(A) Lê-se: a probabilidade do evento A na certeza do evento B. A cardinalidade do número natural é ℵ0 (lê-se alef-nulo ou alef-zero), o cardinal seguinte maior é ℵ1, depois vem ℵ2 e assim por diante. Continuando desta maneira, é possível definir um número cardinal ℵα para qualquer número ordinal α.

O que é um espaço/subespaço

São as possibilidades existenciais em todos os sentidos que podemos imaginar, conceber e principalmente medir. A existência (universo) nasceu com suas próprias leis da física (inclusos os espaços e subespaços); então, não podemos conceber algo que não esteja incorporado na realidade. É importante não confundir Realidade com Leis da Física. Ex: Universo = Realidade U leis da física (100% descobertas); portanto, é obrigatório expandir nossos modelos matemáticos em direção à realidade para que possamos compreendê-la. Fora da ficção, literatura, filosofia, licença poética; tais coisas em si mesmas não podem existir – caso estejam fora de algum espaço ou subespaço incluso o . A infraestrutura de nosso universo ou de outros universos é formada por espaços e subespaços em sentido físico e amplo do termo. Obs: o conjunto está incluso em tudo; mas, nada pode pertencer ao .

Espaço em matemática

O espaço é a extensão tridimensional ilimitada e infinita em que objetos e eventos têm posições e direções relativas. É dentro dos espaços e suas subdivisões (subespaços), onde encontramos todas as possibilidades existenciais no universo físico (leis da física) e no Universo do discurso matemático (UDM).

O que são conjuntos?

Podemos defini-los como: a organização dos espaços e subespaços matemáticos. Para que possamos aprender matemática em profundidade é necessário aprendermos a linguagem moderna dos conjuntos. Por uma questão de notações e convenções seguidas por quase todos os matemáticos e este autor, usaremos letras MAIÚSCULAS para representar conjuntos e letras minúsculas para representar os elementos de um conjunto. Os elementos de qualquer conjunto são colocados entre chaves, ou seja, “{” e “}”. Além disso, se um objeto x pertence a um conjunto X, o representamos como x X. Da mesma forma, se um elemento não pertence ao conjunto, escrevemos x ∉ X. Importante: tanto as notações quanto toda a simbologia matemática, ocupam locais que chamamos de espaços, ao local dentro de outro local podemos nomear como subespaços.

O que são elementos?

Um conjunto é uma coleção de objetos chamados elementos ou membros. Um conjunto sem objetos é chamado conjunto vazio e é denotado por 0 (zero, ou na maioria das vezes por {} abre e fecha chaves sem conteúdo).

Ex: S:= {0,1,2,3}

Com os símbolos:= (dois pontos e igual), queremos dizer que estamos definindo o que é S, ao invés de apenas mostrar uma igualdade. Nós escrevemos:

1 ∈ S

para denotar que o número 1 pertence ao conjunto S, ou seja, 1 é um membro de S. Às vezes queremos dizer que dois elementos estão em um conjunto S, então escrevemos “1, 2 ∈ S” como uma abreviação para “1 ∈ S e 2 ∈ S”. Da mesma forma, escrevemos:

5 ∉ S

para denotar que o número 5 não está em S, ou seja, 5 não é membro de S.

Os elementos de todos os conjuntos em consideração vêm de algum conjunto que chamamos universo. Para simplificar, muitas vezes consideramos o universo como o conjunto que contém apenas os elementos nos quais estamos interessados. O universo é geralmente entendido a partir do contexto e não é mencionado explicitamente. Neste contexto, nosso universo será na maioria das vezes o conjunto de números reais. Enquanto os elementos de um conjunto geralmente são números – outros objetos; como outros conjuntos, podem ser elementos de um conjunto. Um conjunto também pode conter alguns dos mesmos elementos que outro conjunto.

Por exemplo:

T:= {0, 2}

contém os números 0 e 2. Neste caso, todos os elementos de T também pertencem a S. Escrevemos T ⊂ S. Observe:

Figura 2. Um diagrama dos conjuntos do exemplo S e seu subconjunto T. Observe que estamos organizando o espaço de S com seu subespaço interior T.

Aprenda ler matemática

Talvez a maior gafe encontrada no ensino da matemática é quando os alunos não sabem ler as equações e os objetos matemáticos. Ao observar um símbolo, uma fórmula ou equação, você não pode ficar com a dúvida cruel sobre a simbologia empregada, o contexto e principalmente a verbalização da frase na explicação de cada elemento apresentado. Ao olhar para a matemática: você não pode guardar a dúvida – resolva a dúvida de imediato (pergunte ao professor ou pesquise na internet em locais confiáveis com fontes de referência – como neste blog) – jamais fique na dúvida sobre: pontos, linhas, gráficos, letras, símbolos, equações, etc.

Realidade (física) e matemática (subjetiva)

O universo (natureza) é 100% realidade, não há existências fora da realidade (isso inclui a mecânica quântica e teoria da relatividade); portanto, não há matemática escondida na natureza, você não deve procurar matemática na natureza, se fizer isso cometerá o tão falado: viés de confirmação, parte do viés cognitivo. Toda a matemática é 100% subjetiva e como tal é apenas um produto de nosso cérebro que usa nossos sentidos (simulação cerebral) – inclusos – nossos pensamentos, para que possamos intuir a matemática. É por esse motivo que nós não podemos ter acesso direto à realidade física sem antes passarmos pela simulação de nosso cérebro – nossos corpos, funcionam como se fossem sensores ou antenas, por meio dos quais nosso cérebro simula o mundo ao nosso redor. Ex: uma teia de aranha, uma folha, o padrão das conchas, favos de mel, etc. Essas coisas são apenas representações da realidade, geradas por nosso cérebro. Inclusive a dupla hélice de nosso DNA, é apenas uma construção matemática que nós atribuímos pela forma como nosso cérebro consegue interpretar a realidade física por meio de uma simulação interna. Fique atento: somente depois que a matemática foi transformada em experimentos confrontados com o mundo físico (leis da física), é que a realidade toma forma e alcançamos CVJV (conhecimento: crenças verdadeiras, justificadas e validadas) dos fatos. Enquanto a matemática for apenas um apanhado de fórmulas e símbolos em nossas cabeças, o lá fora estará sempre vazio ∅, cuja existência é uma nebulosidade indefinida. Consulte o que é realidade?

Teorema, proposição, lema e corolário

Teorema

Em matemática, um teorema é uma afirmação que tem sido provada, ou pode ser provada. A prova de um teorema é um argumento lógico que usa as regras de inferência de um sistema dedutivo para estabelecer que o teorema é uma consequência lógica dos axiomas e teoremas previamente provados.

Terminologia

Há vários termos diferentes para afirmações matemáticas, esses termos indicam o papel que as declarações desempenham em um determinado assunto. A distinção entre termos diferentes às vezes é bastante arbitrária, e o uso de alguns termos evoluiu ao longo do tempo.

  • Um axioma ou postulado, é um pressuposto fundamental em relação ao objeto estudado, que é aceito sem comprovação. Um conceito relacionado é o de uma definição, que dá o significado de uma palavra ou frase em termos de conceitos conhecidos. A geometria clássica discerne entre axiomas, que são afirmações gerais e postulados, que são afirmações sobre objetos geométricos. Historicamente, os axiomas eram considerados “evidentes”, hoje eles são meramente considerados verdadeiros.
  • Uma conjectura é uma afirmação não comprovada que se acredita ser verdadeira. Conjecturas são normalmente apresentadas em público, e nomeadas após seu criador (por exemplo, a conjectura de Goldbach e Collatz conjectura). O termo hipótese também é usado neste sentido (por exemplo, hipótese de Riemann), que não deve ser confundido com “hipótese” como premissa de uma prova. Outros termos também são usados ​​ocasionalmente; por exemplo, problema quando as pessoas não têm certeza se a afirmação deve ser considerada verdadeira. O Último Teorema de Fermat foi historicamente chamado de teorema; embora, por séculos, tenha sido apenas uma conjectura.
  • Um teorema é uma afirmação que foi comprovada como verdadeira com base em axiomas e outros teoremas.
  • Uma proposição é um teorema de menor importância, ou considerado tão elementar ou imediatamente óbvio, que pode ser declarado sem provas. Isso não deve ser confundido com “proposição” conforme usada na lógica proposicional. Em geometria clássica o termo “proposição” foi usado de maneira diferente: em Os Elementos de Euclides (300 AEC), todos os teoremas e construções geométricas foram chamados de “proposições”, independentemente da sua importância.
  • Um lema é uma “proposição acessória” – uma proposição com pouca aplicabilidade fora de seu uso em uma prova particular. Ao longo do tempo um lema pode ganhar em importância e ser considerado um teorema, embora o termo “lema” geralmente é mantido como parte de seu nome (por exemplo, o lema de Gauss, o lema de Zorn, e os lemas fundamentais).
  • Um corolário é uma proposição que segue imediatamente de outro teorema ou axioma, com pouca ou nenhuma prova exigida. Um corolário também pode ser uma reafirmação de um teorema em uma forma mais simples, ou para um caso especial: por exemplo, o teorema “todos os ângulos internos em um retângulo são ângulos retos” tem um corolário que “todos os ângulos internos em um quadrado são ângulos retos” – um quadrado sendo um caso especial de um retângulo.
  • A generalização de um teorema é um teorema com uma afirmação semelhante, mas em um escopo mais amplo, a partir do qual o teorema original pode ser deduzido como um caso especial (um corolário).

Resumo

Aos resultados acima chamamos de Teorema, enquanto a maioria dos resultados chamamos de Proposições, e para alguns chamamos de Lema (um resultado que leva a outro resultado) ou Corolário (uma consequência rápida do resultado anterior). Não se concentre muito na nomenclatura. Algumas são tradicionais, outras são escolhas estilísticas. Não é necessariamente verdade que um Teorema é sempre “mais importante” que uma Proposição ou um Lema. Também precisaremos cruzar ou unir vários conjuntos de uma só vez. Se houver apenas um número finito, então simplesmente aplicamos a operação de união ou interseção várias vezes.

Sugestões importantes

Há várias estratégias diferentes para provar proposições. Além de usar diferentes métodos de prova, os alunos geralmente cometem alguns erros comuns quando estão aprendendo a provar teoremas. Para auxiliar os alunos que estudam matemática abstrata pela primeira vez, listo aqui algumas das dificuldades encontradas e algumas das estratégias de prova disponíveis.

  • Um teorema não pode ser provado por exemplo; no entanto, a maneira padrão de mostrar que uma afirmação não é um teorema é fornecer um contraexemplo.
  • Os quantificadores são importantes. Palavras e frases como: somente, para todo, para todos e para alguns, possuem significados diferentes.
  • Nunca assuma nenhuma hipótese que não esteja explicitamente declarada no teorema. Você não pode tomar as coisas como garantidas.
  • A matemática é desprovida de realidade (a física é o mundo natural ou real, a matemática será sempre subjetiva – nossa ferramenta mais importante).
  • Suponha que você queira mostrar que um objeto existe e é único. Primeiro, mostre que realmente existe tal objeto. Para mostrar que é único, suponha que existam dois desses objetos, digamos x e y, e então mostre que x = y.
  • Às vezes é mais fácil provar a contra positiva de uma afirmação. Provar a afirmação “Se p, então q” é exatamente o mesmo que provar a afirmação “Se não q, então não p”.
  • Embora, geralmente seja melhor encontrar uma prova direta de um teorema, essa tarefa às vezes pode ser difícil. Pode ser mais fácil supor que o teorema que você está tentando provar é falso e esperar que no decorrer do seu argumento você seja forçado a fazer alguma afirmação que não pode ser verdadeira.

Universo do discurso matemático (UDM)

Acima falamos do universo que compreende a realidade que pode independer de nossos conceitos ou suposições, quando falamos de matemática podemos utilizar o que chamo de “universo do discurso matemático UDM” para representar todo o repertório de objetos ou elementos que fazem uso da lógica subjetiva inventada por nós e espelhada em nossa simulação construída por nosso cérebro (abstrações/intuições). Para dúvidas quanto à simbologia matemática, consulte meu outro poste: Pense com clareza – Lógica e simbologia matemática – Ebooks inclusos.

Ex1: construtor de conjuntos

C = {x ∈ R|0 ≤ x ≤ 1}

Lê-se: C é igual ao espaço x que pertence a R (conjunto dos reais) tal que 0 é menor ou igual ao espaço x que é menor ou igual 1.

Ou, também podemos ler como: “C é uma coleção de todos os elementos x de R tais que 0 é menor ou igual a x e x é menor ou igual a 1”.

Considere a coleção C, que faremos do nosso universo R de números reais da forma maior ou igual a 0 e menor ou igual a 1. Vejamos se podemos listar os elementos como acima. Claramente, 0 é um número real que segue nosso critério para estar na coleção e 1 também. Existe algum outro número real entre 0 e 1 que também satisfaça o critério? Sim! Um desses números é 1/2 (particionamento de espaços).

Considerando a maneira de escrever conjuntos tratadas no exemplo 1 acima, faremos os seguintes conjuntos do conjunto dos números reais R:

(conjunto vazio) – existencial e sem elementos.

N = {1, 2, 3, ···} ,

Z = {…, −3, −2, −1, 0, 1, 2, 3,…},

Q = {p/q ∈ R|p ∈ Z e q ∈ N},

Q+ = {x ∈ Q|x > 0},

Q = {x ∈ Q|x < 0},

Q = {x ∈ Q|x ≠ 0},

R+ = {x ∈ R|x > 0},

R = {x ∈ R|x < 0},

R = {x ∈ R|x ≠ 0}.

Neste exemplo, usamos essas notações para os conjuntos definidos acima. Aqui, o conjunto N é chamado de conjunto dos números naturais, Z é chamado de conjunto dos inteiros e Q é chamado de conjunto dos números racionais. Um conjunto que ainda não escrevemos e ao qual não damos uma notação é o conjunto dos números irracionais. Será tratado em outro poste o motivo é a falta de espaços aqui.

Vimos até agora que podemos formar conjuntos que contêm números. Uma pergunta natural surge: existem conjuntos que contêm elementos que não são apenas números? Bem, como podemos ter visto em nosso ensino médio, os conjuntos podem conter quaisquer tipos de elementos: números, alfabetos, palavras ou; na verdade, um conjunto de livros ou papeis também é um conjunto! Nesta fase, porém, uma pergunta melhor pode ser feita: os elementos de um conjunto podem ser conjuntos? Vamos tentar descobrir por meio de exemplos:

Famílias de conjuntos

Considere o conjunto dos números reais, R. Desejamos coletar todos os conjuntos construídos a partir dos elementos de R que contêm 0. Agora, estamos coletando conjuntos em vez de elementos individuais de R. Podemos ter um desses conjuntos? Sim, o próprio R. Podemos ter outro? Novamente a resposta é sim! {0} é outro conjunto desse tipo. Claramente, listar todos esses conjuntos seria impraticável. Então, usaremos uma função construtora de conjuntos para escrever nossa coleção que chamaremos de F. Então temos:

F = {S|S é construído a partir dos elementos de R e 0 ∈ S}

Lê-se: F é uma função igual ao conjunto S, tal que S é construído a partir dos elementos de R e 0 ∈ pertence a S.

Os elementos de conjuntos podem ser os próprios conjuntos. Sempre que tal coisa acontece, ou seja, temos uma coleção de conjuntos, devemos usar letras (como o F que usamos acima) para escrevê-las. Antes de prosseguir, vamos tentar obter uma coleção de conjuntos, onde os conjuntos serão construídos a partir de N.

Ex2: indexação de conjuntos

Consideremos, como nosso universo, o conjunto dos números naturais N e para cada número natural n ∈ N, tentamos coletar conjuntos (construídos a partir de N) que tenham todos os elementos de 1 a n. Isso significa dizer que coletamos conjuntos Sn para cada n. Aqui, se tentarmos dar diferentes símbolos (letras) a cada um desses conjuntos, ficaremos sem símbolos! Assim, tentamos “indexar” esses conjuntos. Ou seja, escrevemos Sn = {1, 2, ···, n}, onde se entende que à medida que n muda, os elementos do conjunto Sn também mudam. Portanto, S1 = {1}, S2 = {1, 2}, S3 = {1, 2, 3} e assim por diante. Assim, escrevemos nossa família de conjuntos como:

F = {Sn|n ∈ N}

Lê-se: a função ou família F é igual ao conjunto Sn tal que n pertence ∈ a N.

Aqui, dizemos que F é uma família de conjuntos indexada por N; o conjunto dos números naturais N é chamado de conjunto de índices e n é chamado de índice.

Conjuntos nem sempre são indexados por números naturais. Também podemos indexar conjuntos por outros conjuntos, como: inteiros, números racionais, números reais, ou mesmo por um conjunto que não é necessariamente um conjunto de números. Na maioria das vezes, consideraremos um conjunto de índice arbitrário, que denotamos por Λ (Letra grega Lambda Maiúscula ou λ minúscula, ao longo do texto), cujos elementos não são exatamente conhecidos por nós. Usaremos letras gregas maiúsculas para denotar conjuntos de índices arbitrários e as letras gregas pequenas (correspondentes) para denotar os elementos do conjunto de índices. Portanto, em geral, uma família indexada de conjuntos será escrita como:

F = {Aλ|λ ∈ Λ}

Antes de prosseguir, vamos tentar ver um tipo especial de coleção. Suponha que nosso universo seja o conjunto de todos os humanos que vivem na Terra. Suponha que uma pessoa como nós deseja coletar todos aqueles humanos que têm 5 mãos, 6 pernas e 4 caudas. Existe algum ser humano vivo na terra com essas configurações? A resposta é não! Então, nossa coleção não tem nenhum elemento. Um conjunto sem elementos é chamado de conjunto vazio e é denotado por . Uma pessoa com boa experiência em lógica pode fazer uma pergunta neste ponto: em todos os lugares foi escrito um (conjunto vazio). O uso de “um” é justificado? Em outras palavras, o conjunto vazio é único? Abordaremos essa questão mais tarde, depois de termos visto o suficiente sobre operações e igualdades de conjuntos.

Operações em conjuntos

Assim que tivermos os conjuntos, podemos começar a brincar com eles. A primeira coisa que podemos fazer neste momento é comparar dois conjuntos. Em primeiro lugar, abordaremos a questão: quando podemos dizer que dois conjuntos são iguais? No início, definimos nossos conjuntos como coleções. Primeiramente notamos que durante a coleta, não damos importância à ordem em que são coletados. Como resultado, os conjuntos {1, 2} e {2, 1} são os mesmos. O que observamos? Dados dois conjuntos X e Y, quando podemos dizer que eles são iguais? Uma resposta baseada em completa intuição e observação é: Sempre que todo elemento de X é um elemento de Y e todo elemento de Y é um elemento de X. A definição formal (matemática) de igualdade será dada um pouco mais tarde.

A próxima tarefa que podemos fazer é observar os conjuntos que definimos na seção acima. Se olharmos com atenção, todo número natural também é um número inteiro (positivo). Esses dois conjuntos são iguais? Intuitivamente, a resposta a esta pergunta é: Não! 0 é um desses elementos em Z (inteiros) que não é um número N (natural). No entanto, o conjunto dos números inteiros têm todos os elementos do conjunto dos números naturais. Neste caso, chamamos o conjunto dos números naturais de subconjunto do conjunto dos inteiros.

Agora estamos prontos para as definições formais de subconjunto e igualdade.

Obs: o número “0” Zero, foi inventado há mais ou menos 2600 anos, é por isso que não é considerado um número natural, muito cuidado para não fazer confusão entre Z (inteiros com 0) e N (naturais sem 0).

Subconjuntos

Um conjunto X é um subconjunto de um conjunto Y se ∀x ∈ X, x ∈ Y. Isto é denotado por X ⊆ Y.

Essa expressão é lida como: um conjunto X é um subconjunto de um conjunto Y se ∀x ∈ X, x ∈ Y (para todo x que pertence a X, x pertence a Y), significa que X ⊆ Y (X está contido ou é igual a Y).

Nota1: Se o conjunto Y tem pelo menos um elemento que não está em X, então X é chamado de subconjunto próprio de Y. Isso é denotado por X ⊂ Y ao longo da explicação.

Nota2: se X é um subconjunto de Y, então Y é chamado de superconjunto de X.

Igualdade de conjuntos

Dois conjuntos X e Y são iguais se ∀x ∈ X, x ∈ Y e ∀y ∈ Y, y ∈ X. Isso é equivalente a X ⊆ Y e Y ⊆ X. A igualdade é denotada por X = Y.

Agora, tentamos construir mais conjuntos novos dos conjuntos que já temos. Dados quaisquer dois conjuntos X e Y, uma maneira de fazer um novo conjunto é coletar todos os elementos de X e todos os elementos de Y em uma única coleção, digamos Z. Assim, qualquer elemento de Z é de X ou de Y (ou mesmo ambos, se tiverem elementos em comum). Um conjunto formado dessa maneira é chamado de união de X e Y. Outra maneira de fazer um novo conjunto é coletar os elementos que estão em X e Y e colocá-los em uma única coleção, digamos U. Essa coleção é chamada de interseção de X e Y. Passamos agora para a definição formal de união e interseção.

Definições gerais

Um conjunto A é um subconjunto de um conjunto B se x ∈ A implicar x ∈ B, e escrevemos A ⊂ B. Ou seja, todos os membros de A também são membros de B. Às vezes escrevemos B ⊃ A que significar a mesma coisa.

Dois conjuntos A e B são iguais se A ⊂ B e B ⊂ A. Escrevemos A = B. Ou seja, A e B contêm exatamente os mesmos elementos. Se não for verdade que A e B são iguais, então escrevemos A ≠ B.

Um conjunto A é um subconjunto próprio de B se A ⊂ B e A ≠ B. Escrevemos A ⊊ B Lê-se: A está contido, mas não é igual a B.

Para o exemplo da Figura 2 acimaS e T -, T ⊂ S, mas T ≠ S. Então T é um subconjunto próprio de S (T ⊊ S, ilustrando o fato de que T é subconjunto de S ou, equivalentemente, que S é um superconjunto de T). Se A = B, então A e B são simplesmente dois nomes para o mesmo conjunto.

Uso de espaços construtores de conjuntos

Para definir conjuntos, muitas vezes usa-se a notação do “espaço” construtor de conjuntos:

{x ∈ A : P(x)}

Lê-se: x pertence a A, tal que, P(x) é verdadeiro, dentro do espaço que começa com {abre e fecha chaves}.

Esta notação refere-se a um subconjunto do conjunto A contendo todos os elementos de A que satisfazem a propriedade P(x). Usando S = {0, 1, 2} como acima, {x ∈ S:x ≠ 2} é o conjunto {0, 1}. A notação é às vezes abreviada como {x:P(x)}, ou seja, A não é mencionado quando entendido a partir do contexto. Além disso, x ∈ A às vezes é substituído por uma fórmula para facilitar a leitura da notação.

Exemplos de notações comuns para conjuntos

  • O conjunto dos números naturais, N:= {1, 2, 3, . . .}.
  • O conjunto de inteiros, Z:= {0, −1, 1, −2, 2, . . .}.
  • O conjunto dos números racionais, Q:= {m/n:m, n ∈ Z e n ≠ 0}.
  • O conjunto dos números naturais pares, {2m:m ∈ N}.
  • O conjunto dos números reais, R.
Figura 3. Observe que NZQR C (os Naturais N estão contidos nos Inteiros Z, contidos nos racionais Q, contido nos reais R, contidos nos C complexos).

Obs: montamos nossos conjuntos a partir da organização de conjuntos anteriores previamente estabelecidos.

União e interseção de conjuntos

União

Significa a associação ou combinação de vários elementos, semelhantes ou diferentes, com o intuito de formar um conjunto. Junção, ligação e conexão são alguns dos sinônimos da palavra união, e que nos ajudam a entender o significado amplo deste termo.

A união de dois conjuntos A e B é definida como:

A ∪ B:= {x:x ∈ A ou x ∈ B}

Lê-se: a união do conjunto A com o conjunto B, é igual ao espaço x tal que x pertente a A ou x pertence a B).

Interseção

Significa a operação sobre dois ou mais conjuntos de que resulta um conjunto com todos os elementos que são comuns.

A interseção de dois conjuntos A e B é definida como:

A ∩ B:= {x:x ∈ A e x ∈ B}

Lê-se: a interseção do conjunto A com o conjunto B, é igual ao espaço x tal que x pertente a A e x pertence a B).

Complementar

Que completa ou complementa. Acrescentar, adicionar o elemento que falta a alguma coisa. Receber o que completa ou conclui alguma coisa: completar um trabalho.

Obs.: \ (barra invertida) representa o conjunto diferença: A\B:= {x:x ∈ A e x ∉ B} Lê-se: A − B é igual ao conjunto x, tal que x pertence a A, e x não pertence ao conjunto B.

Um complemento de B em relação a A (ou diferença teórica de conjuntos de A e B) é definido como:

A\B:= {x:x ∈ A e x ∉ B}

ou

A − B = A ∩ Bc

Lê-se: o complementar de B em relação a A é igual ao espaço x tal que x pertence a A e x não pertence a B.

Dizemos complemento de B e escrevemos Bc em vez de A\B se o conjunto A é o universo inteiro ou se é o conjunto óbvio que contém B, e é entendido a partir do contexto.

B\A:= {x:x ∈ B e x ∉ A}

Lê-se: o complementar de A em relação a B é igual ao espaço x tal que x pertence a B e x não pertence a A.

Dizemos complemento de A e escrevemos Ac (quando aparece de forma isolada) em vez de B\A se o conjunto B é o universo inteiro ou se é o conjunto óbvio que contém A, e é entendido a partir do contexto.

Conjuntos disjuntos

Dois conjuntos são ditos disjuntos se não tiverem nenhum elemento em comum. Em outras palavras, dois conjuntos são disjuntos se sua interseção for o conjunto vazio .

Dizemos que os conjuntos A e B são disjuntos se A ∩ B = ∅.

Obs: a notação Bc (idem para Ac) pode ser um pouco vaga neste ponto. Se o conjunto B é um subconjunto dos números reais R, então Bc significa R\B. Se B é naturalmente um subconjunto dos números naturais, então Bc é N\B. Se uma ambiguidade pode surgir, usamos a notação de diferença de conjunto A\B (lê-se: A menos B).

Importante: caso o conjunto A e/ou conjunto B forem iguais ao conjunto universo; então, concluímos que os Ac e Bc são iguais a ∅.

Ex3:

Figura 4. Diagramas de Venn com operações de conjuntos, o resultado da operação é sombreado.

Operações com conjuntos

Ilustramos as operações nos diagramas de Venn na Figura 4. Vamos agora estabelecer um dos teoremas básicos sobre conjuntos e lógica.

Lei de Morgan. Sejam os conjuntos A, B, C. Então:

(B C)c = Bc Cc,

(B ∩ C)c = Bc ∪ Cc.

Ou, simplificando:

A \ (B C) = (A \ B) (A \ C),

A \ (B ∩ C) = (A \ B) ∪ (A \ C).

Prova. A primeira afirmação é provada pela segunda afirmação se assumirmos que o conjunto A é nosso “universo”. Vamos provar A \ (B ∪ C) = (A \ B) ∩ (A \ C). Lembre-se da definição de igualdade de conjuntos. Primeiro, devemos mostrar que se x ∈ A \ (B ∪ C), então x ∈ (A \ B) ∩ (A \ C). Em segundo lugar, devemos também mostrar que se x ∈ (A \ B) ∩ (A \ C), então x ∈ A \ (B ∪ C). Então, vamos supor que x ∈ A \ (B ∪ C). Então x está em A, mas não em B nem em C. Portanto, x está em A e não em B, ou seja, x ∈ A \ B. Da mesma forma x ∈ A \ C. Assim x ∈ (A \ B) ∩ (A \ C). Por outro lado, suponha que x ∈ (A \ B) ∩ (A \ C). Em particular, x ∈ (A \ B), então x ∈ A e x ∉ B. Também como x ∈ (A \ C), então x ∉ C. Daí x ∈ A \ (B ∪ C).

No entanto, suponha que temos uma coleção infinita de conjuntos (um conjunto de conjuntos) {A1, A2, A3, . . .}. Nós definimos:

\bigcup_{n=1}^{\infty} A_{n}:=\left\{x: x \in A_{n} \ para \ alguns \ n \in \mathbb{N}\right\}

Esta expressão é lida como: a união que começa em n = 1 e vai até ao infinito do conjunto An, é igual ao espaço x, tal que x ∈ pertence à An, para alguns n que pertencem ao conjunto N.

\bigcap_{n=1}^{\infty} A_{n}:=\left\{x: x \in A_{n} \ para \ todos \ n \in \mathbb{N}\right\}

Esta expressão é lida como: a interseção que começa em n = 1 e vai até ao infinito do conjunto An, é igual ao espaço x, tal que x ∈ pertence à An, para todos os n que pertencem ao conjunto N.

Também podemos ter conjuntos indexados por dois números naturais. Por exemplo, podemos ter o conjunto de conjuntos {A1,1, A1,2, A2,1, A1,3, A2,2, A3,1, . . .}. Então escrevemos:

\bigcup_{n=1}^{\infty} \bigcup_{m=1}^{\infty} A_{n, m}=\bigcup_{n=1}^{\infty}\left(\bigcup_{m=1}^{\infty} A_{n, m}\right)

E da mesma forma com os cruzamentos. Não é difícil ver que podemos tomar a união em qualquer ordem. No entanto, mudando a ordem de uniões e cruzamentos geralmente não é permitido sem prova. Por exemplo:

\bigcup_{n=1}^{\infty} \bigcap_{m=1}^{\infty}{k \in N : m k<n}=\bigcup^{\infty} \emptyset=\emptyset

No entanto,

\bigcap_{m=1}^{\infty} \bigcup_{n=1}^{\infty}{k \in N : m k<n}=\bigcap_{m=1}^{\infty} N = N

Às vezes, o conjunto de índices não são os números naturais. Nesse caso, exigimos uma descrição mais geral da notação. Suponha que λ seja algum conjunto e para cada λ ∈ I, existe um conjunto . Então definimos:

\bigcup_{\lambda \in I} A_{\lambda}:=\left\{x: x \in A_{\lambda} \text { para alguns } \lambda \in I\right\}, \bigcap_{\lambda \in I} A_{\lambda}:=\left\{x: x \in A_{\lambda} \text { para todos } \lambda \in I\right\}

União e interseção arbitrárias

Dos conjuntos construídos a partir de R, para cada par, dado uma união e uma interseção. O que podemos observar?

As definições de união e interseção são feitas apenas para dois conjuntos. Mas, gostaríamos de fazer uma definição geral para uma coleção arbitrária de conjuntos cuja união e interseção precisamos encontrar. Simplesmente estendendo as definições (cuja origem é nossa intuição), obtemos as seguintes definições para uniões e interseções de famílias arbitrárias de conjuntos.

União arbitrária

Dado uma família arbitrária de conjuntos indexados F = {Aλ|λ ∈ Λ} a união desta família é a coleção de elementos que estão em pelo menos um dos conjuntos da família. Nós a escrevemos como:

\bigcup_{\lambda \in \Lambda} A_{\lambda}=\left\{x \mid \exists \lambda_{0} \in \Lambda \text { tal que } x \in A_{\lambda_{0}}\right\}

Interseção arbitrária

Dada uma família arbitrária de conjuntos indexados: F = {Aλ|λ ∈ Λ} a interseção desta família é a coleção de elementos que estão em todos os conjuntos da família. Nós o escrevemos como:

\bigcap_{\lambda \in \Lambda} A_{\lambda}=\left\{x \mid \forall \lambda \in \Lambda, x \in A_{\lambda}\right\}

Como observado no Ex:02 acima, podemos ver que a interseção de alguns conjuntos pode ser o conjunto vazio, ou seja, pode haver conjuntos X e Y tais que X ∩ Y = ∅. Tais conjuntos são chamados disjuntos. Em particular, o leitor deve ter observado que Q+ e Q são disjuntos. Se tomarmos a união de tais conjuntos (cuja interseção é vazia), a união é chamada de união disjunta. Como observação imediata, podemos concluir que Q é a união disjunta de Q+ e Q. Da mesma forma, se F = {Aλ|λ ∈ Λ} é uma família indexada arbitrária, então F é uma família disjunta se:

\bigcap_{\lambda \in \Lambda} A_{\lambda}=\emptyset

Aqui, podemos ter outro conceito, muitas vezes chamado de disjunção de pares. Diz-se que a família F é disjunta aos pares se:

∀λ1, λ2 ∈ Λ com λ1 ≠ λ2, temos Aλ1 ∩ Aλ2 = ∅

Complementares estendidos (complemento relativo ou diferença)

Outra maneira de obter novos conjuntos dos antigos é coletar todos os elementos que não estão no conjunto fornecido. Chamamos essa coleção de complemento do conjunto dado. Dado um conjunto A, seu complemento é a coleção de elementos que não estão em A. Nós o escrevemos como:

A^{c}={x \mid x \notin A}

Aqui, devemos notar que não conhecemos nada “fora” do nosso universo do discurso (UDM). Portanto, para definir um complemento, precisamos de um conjunto universal. Nós o chamamos, por enquanto, de U. Como não sabemos o que está fora de U; claramente, Uc = ∅ e também, c = U, já que nenhum dos elementos de U está em . Assim, uma melhor maneira de escrever complementos é:

Ac = {x ∈ U|x ∉ A}

Lê-se: o conjunto complementar de A é igual ao espaço x que pertence ao conjunto U, tal que x não pertence ao conjunto A.

Além de receber complementos, uma maneira de obter novos conjuntos de dois conjuntos A e B é coletando os elementos que estão apenas em um dos conjuntos e não em outro. Chamamos isso de complemento relativo ou diferença de conjuntos.

Conjuntos Indexados

Um conjunto X ⊂ U é frequentemente descrito por seus elementos indexados, como X = {Xα}, ou por uma dada condição P(x) em U, como X = {X ∈ U:P(x)}. Nós distinguimos finitos, enumeráveis, contáveis (finito ou enumerável), e conjuntos incontáveis. O número de elementos em um conjunto infinito X é denotado pela cardinalidade de X.

Se F = {Xα: α ∈ A} é uma família indexada de subconjuntos de um conjunto universal U, então a Lei de De Morgan, declara que:

U \backslash\left(\cup_{\alpha} X_{\alpha}\right)=\bigcap_{\alpha}\left(U \backslash X_{\alpha}\right) \quad e \quad U \backslash\left(\cap_{\alpha} X_{\alpha}\right)=\cup_{\alpha}\left(U \backslash X_{\alpha}\right)

A família F é chamada disjunta se \bigcap_{\alpha} X_{\alpha}=\varnothing, é chamada disjunta par a par quando X_{\beta} \cap X_{\gamma}=\varnothing para qualquer indicador distinto \beta, \gamma \in A.

Diferenças entre problemas na física e problemas matemáticos

Figura 5. Problemas da física x problemas da matemática.

No diagrama da figura 5, podemos observar a diferença de um problema físico que tem 100% de confirmação, comparado a um problema matemática que tem 100% de abstração. Resolver um problema do mundo físico diretamente é difícil, então precisamos fazer a abstração (intuir o problema) e realizar a simulação com possibilidades infinitas dentro do escopo {espaços} da matemática. Quando atingimos o nível da demonstração (todas as equações resolvidas), podemos partir para o campo da física e colocar em prática a nossa solução. Somente após os testes na prática é que teremos a comprovação (experiência) de que a solução física foi encontrada. {RC}.

Demonstração: Qualquer base de um mesmo subespaço possui um mesmo número de elementos.

Neste vídeo demonstramos, por contradição, que qualquer base de um mesmo subespaço possui o mesmo número de elementos e assim, definimos o termo dimensão de um subespaço. {c} Khan Academy Brasil.

O matemático está envolvido num jogo do qual ele mesmo escreve as regras, enquanto o físico joga com as regras fornecidas pela natureza.

Paul Adrien Maurice Dirac.

Sugestões de leituras

Amalie Emmy Noether (Erlangen, 23 de março de 1882 – Bryn Mawr, 14 de abril de 1935) foi uma matemática alemã, conhecida pelas suas contribuições de fundamental importância aos campos da física teórica e álgebra abstrata. Considerada por David Hilbert, Albert Einstein, Hermann Weyl e outros como a mulher mais importante na história da matemática. Ela revolucionou as teorias sobre anéis, corpos e álgebra. Em física, o teorema de Noether explica a conexão fundamental entre a simetria na física e as leis de conservação.

Clique na capa do livro ao lado e comece a leitura.

Terence Tao. Em fevereiro de 2007, converti minha página de atualizações de pesquisa “O que há de novo” em um blog em terrytao.wordpress.com. Desde então, este blog cresceu e evoluiu para cobrir uma ampla variedade de tópicos matemáticos, desde minhas próprias atualizações de pesquisa até palestras e postagens de outros matemáticos, problemas abertos, anotações de aula, artigos expositivos em níveis básicos e avançados. Boa Leitura!

Clique na capa do livro ao lado e acesse via link direto.

Lembre-se: a matemática é a ciência embarcada em todas as atividades humanas, desde o surgimento da escrita, nas tecnologias aeroespaciais, computadores analógicos, digitais, quânticos e principalmente nas criptomoedas que em breve substituirão toda a reserva de valor na economia mundial, sendo a mais importante cripto, Bitcoin. {RC}.

Referências bibliográficas

Coronavírus ÔMICRON Code: B.1.1.529 informações e genoma completo para download

Crédito de imagem Orpheus FX

As novas naves Ômicron (partículas virais) do Coronavírus Sar-Cov-2 são extremamente contagiosas, essas naves viajam pelo ar dentro de micro partículas líquidas (aerodispersóide) e podem infectar seres com pulmões facilitando sua expansão e disseminação.

A pandemia de coronavírus segue firme em rápida expansão em 2022

Até agora, a Síndrome Respiratória Aguda Grave Coronavirus-2 (SARS-CoV-2) reivindicou mais de 6 milhão de vidas no mundo todo. Diversas vacinas da doença do coronavírus (COVID-19) foram desenvolvidas pelos cientistas que receberam a aprovação ou a autorização para uso emergencial, e, subsequentemente, os programas de vacinação começaram em muitas partes do mundo. As vacinas disponíveis têm sido projetadas contra a proteína do ponto da tensão de ligação ACE2, SARS-CoV-2 original que foi relatada em Wuhan, China, em 2019. Estas vacinas induzem anticorpos contra as proteínas do ponto assim como as respostas das células T que protegem contra a doença severa.

Créditos: Nucleous – A faster way to learn health and science.

Ômicron é mais uma das linhagens do vírus SARS-CoV-2 – não confunda o vírus com a doença

Linhagens são definidas como entidades/organismos que compartilham um ancestral comum e apresentam mutações similares. Assim, novas linhagens de diversos organismos surgem a partir de mutações, que em sua grande maioria são prejudiciais a essas entidades. No caso dos vírus, a maioria das mutações não causa mudanças na capacidade de dispersão, infecção ou na gravidade da doença. Entretanto, uma minoria dessas mudanças pode levar o vírus a se tornar mais transmissível ou mais mortal.

Vírus como o SARS-CoV-2 mudam mais rapidamente que outros micro-organismos como bactérias e fungos, sendo classificados em linhagens distintas por pequenas diferenças em seu material genético, que podem ou não ser associadas a novas características virais. Para melhor entender e estudar os vírus, os cientistas criaram um sistema de nomenclatura para as diferentes linhagens do SARS-CoV-2, o que permite comparar os resultados obtidos em qualquer região do planeta e detectar quais linhagens são mais prevalentes e estão circulando em uma área ou em um dado momento. Até o momento um conjunto de mutações foram identificadas em algumas linhagens do coronavírus como Ômicron que permitem estes sejam mais transmissíveis entre as pessoas, mas nada foi encontrado até o momento sobre mutações que levariam a um quadro mais complicado da doença ou mesmo maior mortalidade. Devido às linhagens surgirem continuamente à medida em que o coronavírus infecta uma quantidade maior de pessoas, fica clara a necessidade de monitorar a evolução do genoma viral e a prevalência das diferentes linhagens ao longo do tempo.

Segue o modo correto de ler sobre o Coronavírus

Matemática do coronavírus

Crédito imagem: a matemática na pandemia de COVID-19 – Unifesp

Clique na imagem acima para ler o paper contendo todos os cálculos das naves de corononavírus, sua entrada e fragmentação dentro de nossas células, bem como as equações e fórmulas científicas dos cálculos realizados em laboratório. Também leia este resumo em português: Coronavírus em números.

Qual a diferença entre os Vírus: Coronavírus e Influenza A?

Créditos imagem: Open Edu

A principal diferença reside na dinâmica de replicação/transcrição, o vírus Influenza A, após sua entrada na célula precisa injetar o material genético mRNA dentro do núcleo celular (para fazer a replicação e transcrição). O coronavírus não precisa fazer isso, após sua entrada na célula ele faz a replicação e transcrição no citoplasma fora do núcleo e domina a célula de modo a transformar as organelas ribossomos em fábricas de componentes para montagem de novas naves infecciosas (vírions ativos). Observe a imagem acima.

Ciclo de replicação do vírus influenza A – causador da famosa gripe

Créditos imagem: Open Edu

A gripe é disseminada em gotículas de aerossol que contêm partículas virais (ou por gotículas de núcleos virais dessecados), e a infecção pode ocorrer se estas entrarem em contato com o trato respiratório. A neuraminidase viral cliva polissacarídeos no muco protetor que reveste o trato, o que permite ao vírus atingir a superfície do epitélio respiratório.

A hemaglutinina agora se liga às glicoforinas (glicoproteínas contendo ácido siálico) na superfície da célula hospedeira, e o vírus é captado por endocitose em um fagossomo. Os lisossomos ácidos se fundem com o fagossomo para formar um fagolisossomo e o pH dentro do fagolisossomo cai. Isso promove a fusão do envelope viral com a membrana do fagolisossomo, desencadeando o desprendimento do capsídeo viral e a liberação de RNA viral e nucleoproteínas no citosol.

O RNA genômico viral então migra para o núcleo onde ocorre a replicação do genoma viral e a transcrição do mRNA viral. Esses processos requerem enzimas do hospedeiro e do vírus. O RNA viral de fita negativa é replicado pelo RNA polimerase viral dependente de RNA, em um RNA complementar de sentido positivo cRNA, e essas fitas de RNA positiva e negativa se associam para formar o RNA de fita dupla dsRNA. A fita de cRNA é subsequentemente replicada novamente para produzir novo RNA de fita negativa genômica viral. Parte do cRNA também é processado em mRNA para tradução de proteínas virais. O ciclo de infecção é rápido e as moléculas virais podem ser detectadas dentro da célula hospedeira dentro de uma hora após a infecção inicial.

As glicoproteínas do envelope (hemaglutinina e neuraminidase) são traduzidas no retículo endoplasmático, processadas e transportadas para a membrana plasmática da célula. O capsídeo viral é montado dentro do núcleo da célula infectada. O capsídeo se move para a membrana plasmática, onde brota, levando um segmento de membrana contendo a hemaglutinina e a neuraminidase, e isso forma o novo envelope viral. Os vírus da gripe podem infectar vários tipos de células diferentes de diferentes espécies. Este fenômeno é em parte porque as glicoproteínas celulares que são reconhecidas pela hemaglutinina viral estão amplamente distribuídas no agente infeccioso.

Qual é o termo para a propriedade dos vírus que permite que eles se repliquem apenas em determinados tipos de células?

Esta propriedade é o tropismo viral. Portanto, podemos dizer que os vírus da gripe têm um amplo tropismo.

Uma segunda razão pela qual o vírus pode infectar uma variedade de tipos de células é que a estratégia de replicação da gripe é relativamente simples: “infectar a célula, replicar o mais rápido possível e depois sair novamente”. Este é o efeito citopático do vírus. A morte celular causada diretamente pelo vírus pode ser distinguida da morte celular causada pelas ações do sistema imunológico, uma vez que elimina as células infectadas.

Efeitos da morte celular

A morte celular prejudica a função de um órgão infectado e muitas vezes induz a inflamação, um processo que leva os glóbulos brancos (leucócitos) e as moléculas do sistema imunológico ao local da infecção. Em primeiro lugar, os leucócitos estão envolvidos na limitação da propagação da infecção; mais tarde, eles se envolvem no combate à infecção e, na fase final, limpam os detritos celulares para que o tecido possa se reparar ou regenerar.

Os sintomas da gripe experimentados por uma pessoa infectada são em parte devido ao efeito citopático do vírus, em parte devido à inflamação e em parte como resultado da resposta imune inata contra o vírus. A gravidade da doença depende em grande parte da taxa em que esses processos ocorrem.

Na maioria dos casos, a resposta imune se desenvolve com rapidez suficiente para controlar a infecção e os pacientes se recuperam. Se a replicação viral e os danos ultrapassarem o desenvolvimento da resposta imune, pode ocorrer uma infecção fatal.

Em infecções graves de gripe, os pulmões podem se encher de líquido, pois o epitélio que reveste os alvéolos (sacos aéreos) é danificado pelo vírus. O fluido é ideal para o crescimento de bactérias, e isso pode levar a uma pneumonia bacteriana, na qual os pulmões são infectados por um ou mais tipos de bactérias, como o Haemophilus influenzae. Danos às células que revestem os vasos sanguíneos podem causar sangramento local nos tecidos, e essa forma de “doença fulminante” foi vista regularmente em tecidos pulmonares post-mortem de pessoas que morreram na pandemia de 1918.

Ciclo de replicação do vírus Sars-Cov-2 – causador da doença Covid19

Créditos imagem: Open Edu

O SARS-CoV-2 possui RNA de fita simples em sentido positivo e envelopado, sendo constituído por um genoma de sete genes, conhecidos como: ORF1a, ORF1b, OEF3, S, E, M, e N. Possui um tamanho molecular relativamente pequeno se comparado com uma célula humana, mas grande o suficiente para ficar retido em tecidos, daí a recomendação do uso de máscaras como profilaxia.

Estrutura do coronavírus

Créditos imagem: www.nejm.org
  • Proteínas Spike: São glicoproteínas em formato de coroa localizadas na membrana, essenciais para a infecção das células pulmonares humanas.
  • Membrana: Mais conhecida como capsídeo em vírus, é composta por capsômeros unidos com a função de proteger o conteúdo viral.
  • Envelope viral: Estruturas derivadas do capsídeo e tem como função o armazenamento de proteínas sintetizadas pelo vírus.
  • Nucleocapsídeo: São capsômeros unidos em torno do material genético preservando sua estrutura.
  • Genoma: RNA de fita simples e sentido positivo, responsável pelo armazenamento de informações genéticas com genes que indicam síntese de determinadas proteínas.

Genes codificantes

  • Genes ORF1a/b: Codifica poliproteínas do tipo replicase.
  • Gene S: Codifica produção das proteínas Spike.
  • Gene E: Codifica produção de proteínas que constituem o envelope viral.
  • Gene M: Codifica a produção dos capsômeros que envolvem o citosol.
  • Gene N: Codifica a produção dos capsômeros que envolver a fita de RNA.

Dinâmica molecular do vírion (nave viral infectante)

Uma vez dentro das vias respiratórias, o coronavírus utiliza de suas proteínas spike para a infecção das células do Sistema Respiratório. Essas proteínas possuem um domínio (SARS-CoV-2-CTD) que se liga ao receptor ACE2 das células humanas que é participante na conversão da angiotencina-2. Existem pesquisas que investigam a relação entre a expressão do Gene ACE2 e a suscetibilidade à desenvolver a doença COVID-19.

Estacionamento da nave coronavírus na superfície da célula em pré-fusão e pós-fusão

Propomos que existem duas vias para as mudanças conformacionais (configurações adaptativas) – afirma Chen – da Divisão de Medicina Molecular Infantil de Boston. “Uma é dependente de ACE2 e permite que o vírus entre em uma célula hospedeira. O segundo é independente de ACE2.” Como resultado da mudança espontânea de forma, as naves de coronavírus geralmente carregam as duas formas da proteína spike. A forma rígida expande seus braços a partir da superfície do vírus – quando pousar em uma superfície – por exemplo. Isso poderia explicar por que o vírus parece permanecer viável (infectável) em várias superfícies por horas ou dias.

Estacionamento e fusão da nave do coronavírus com a célula. Créditos: Boston Children’s Hospital

Uma vez ligado à membrana celular, o vírion pode fundir sua membrana à da célula hospedeira e liberar seu material genético no meio intracelular (citosol), dando início ao processo infeccioso em que a célula passa a produzir proteínas virais e atua na multiplicação do vírion.

Proteínas Spike em pré e pós fusão com a célula

Proteínas Spike com as configurações de pré e pós fusão: Créditos: Boston Children’s Hospital

Processo de infecção viral

  1. A proteínas spike reconhecem o receptor ACE2 (pré-fusão)
  2. Ligação entre o domínio SARS-CoV-2-CTD e o receptor ACE2
  3. Fusão das membranas e início do processo infeccioso (pós-fusão)

Processos da replicação viral

  1. Adsorção (Spike/receptor).
  2. Liberação genoma Viral p/ interior celular.
  3. Tradução de enzimas do complexo: Replicação/Transcrição (pol1ab).
  4. Transcrição do RNAm em segmentos de polaridade negativa (-).
  5. Transcrição do RNAm em segmentos de polaridade positiva (+).
  6. Tradução de proteínas estruturais.
  7. Replicação do RNA genômico.
  8. Composição do novo vírion.
  9. Liberação da partícula viral infectante.

A principal razão para o coronavírus SAR-COV-2 ser tão rápido em propagar a pandemia é que ele não precisa chegar ao núcleo celular, bastando apenas invadir uma de nossas células respiratórias – ganha tempo e cada vez mais recursos.

{RC}.

Gestantes infectadas pelo coronavírus podem passar o vírus para o bebê ainda no útero

As evidências atuais suportam que o maior risco de infecção para recém-nascidos ocorre quando a mãe tem o início da COVID-19 perto do momento do parto. Um relatório de vigilância do CDC incluiu 923 recém-nascidos nascidos de mulheres com COVID-19; entre esses recém-nascidos, 2,6% testaram positivo para SARS-CoV-2 após o nascimento. No entanto, entre um subconjunto de 328 bebês nascidos de mulheres com início documentado de infecção dentro de 14 dias antes do parto, 4,3% dos bebês testaram positivo para SARS-CoV-2. Um estudo internacional relatou 416 bebês nascidos principalmente de mulheres grávidas com COVID-19 sintomática no momento do parto e relatou que 13% dos recém-nascidos apresentaram resultado positivo dentro de 48 horas após o nascimento. Deve-se notar que não há uma distinção clara de risco entre infecção materna sintomática ou assintomática; em vez disso, o momento do início da infecção materna (e a capacidade de transmitir o vírus) só pode ser confirmado quando acompanhado pelo início dos sintomas.

Esteja ciente de que você vai contrair o coronavírus, mas isso não significa que ficará doente, desde que, tome as vacinas!

Se você tiver contato com o esgoto pode pegar coronavírus

Segundo um estudo publicado pelo The Lancet – Gastroenterology & Hepatology, entre 16 de janeiro e 15 de março de 2020, registramos 98 pacientes. Amostras respiratórias e fecais foram coletadas de 74 (76%) pacientes. Amostras fecais de 33 (45%) de 74 pacientes foram negativas para SARS CoV-2 RNA, enquanto seus tratos respiratórios permaneceram positivos por uma média de 15,4 dias (SD 6,7) desde o início dos primeiros sintomas. Dos 41 (55%) dos 74 pacientes com amostras fecais positivas para RNA de SARS-CoV-2, as amostras respiratórias permaneceram positivas para RNA de SARS-CoV-2 por uma média de 16,7 dias (SD 6,7) e as amostras fecais permaneceram positivas por uma média de 27,9 dias (10,7) após o início dos primeiros sintomas (ou seja, por uma média de 11,2 dias [9,2] a mais do que para amostras respiratórias). O curso completo da doença dos 41 pacientes com amostras fecais positivas para RNA SARS-CoV-2 é mostrado na figura. Notavelmente, o paciente 1 teve amostras fecais positivas por 33 dias continuamente após as amostras respiratórias se tornarem negativas, e o paciente 4 testou positivo para RNA de SARS-CoV-2 em sua amostra fecal por 47 dias após o início dos primeiros sintomas (apêndice pp 4-5).

Coronavírus nos esgotos de Curitiba 2022

Créditos: Rede Monitoramento Covid Esgotos Curitiba. Clique na imagem para ler o relatório 04/01/2022.

A ciência busca soluções para os problemas existenciais

Confie na ciência e não se preocupe, tome todas as vacinas que puder dentro das recomendações sanitárias do seu país. As vacinas (todas elas, inclusive para as crianças), preparam seu organismo para receber o vírus e não causam danos ao seu organismo caso seja exposto ao vírus. As vacinas facilitam a geração de anticorpos que combatem o vírus – é melhor ter 1 bilhão de vírus dentro de você do que 100 bilhões não acha?! -, neste caso seu organismo pode entrar em falência rapidamente se você não tomar as vacinas.

Obs: existe algum remédio contra o coronavírus? A resposta é: NÃO! Somente as vacinas são recomendas e, mesmo assim, o vírus ainda poderá te contagiar! Não há como se esconder das velozes naves do coronavírus!

Estatísticas atualizadas Brasil e Planeta Terra

Créditos Github: Clique na imagem para acessar os dados em tempo real.
Créditos JHU CSSE COVID: Clique na imagem para atualizar os dados.

Referências Bibliográficas

Em que devemos acreditar? A resposta correta é: no grau de probabilidade dos existenciais!

Vivemos na era da máxima aquisição de conhecimentos. Créditos imagem: pngwing.

Qual a confiabilidade da informação distribuída hoje na internet?

Quando você tem contato com determinada informação, seja na forma de conteúdos que aparecem nas redes sociais: Blogs (este aqui por exemplo) Twitter, WhatsApp, Facebook, canais do Youtube, Wikipedia, etc. A medida da probabilidade da informação embarcada nesses meios digitais, estar correta, é de apenas 50%.

Análise do espaço amostral

Para analisar esses espaços vamos utilizar a distribuição de Bernoulli, uma distribuição discreta de espaço amostral {0, 1}, que tem valor 1 com a probabilidade de sucesso p e valor 0 com a probabilidade de falha q = 1 − p. Uma moeda pode dar “coroa” com probabilidade p e “cara” com probabilidade 1 − p. A experiência é dita justa se p = 0.5, indicando a origem dessa terminologia em jogos de apostas (a aposta é justa se ambos os possíveis resultados têm a mesma probabilidade).

Qual a orientação segura para tomar como verdade algo divulgado nas redes sociais?

  • Não acredite às cegas no que você leu, considere tudo como 50% verdadeiro. Obs: metáfora das pílulas: Pílula Azul = Senso Comum – Pílula Vermelha = PCE (Produto de Crenças em Existentes).
  • Busque as fontes da postagem, mensagem, conteúdo, fotos, vídeos, etc.
  • Faça uma comparação do conteúdo com suas fontes (origem da informação divulgada), caso o conteúdo não tenha fontes, descarte imediatamente a mensagem, fotos, textos, etc. – Neste ponto a probabilidade de ser verdade cairá para zero!
  • Revise profundamente tudo o que você leu, ouviu, aprendeu, etc. Compare tudo com os avanços e descobertas científicos atuais. Esta é a conduta para alcançar a assertividade!
  • Nunca propague Fake News (notícias falsas ou com base em inexistentes)!

A informação contida em bíblias é segura?

Toda informação contida em livros bíblicos tem como base as crenças em inexistentes, portanto, não são confiáveis ou contém atrasos culturais, morais, éticos e sociológicos!

Prova

Ex: A x 0 = 0 neste caso, uma informação cuja fonte é inexistente – mesmo que esteja escrito como referência ou como significado – terá o mesmo efeito de multiplicar por 0, o resultado será nulo! Torna-se um PCI (produto de crenças em inexistentes). Deveria ser obrigatório que esses livros viessem com a seguinte inscrição nas capas: cuidado com a leitura, este conteúdo é duvidoso!

O que são existenciais?

Existenciais são sinônimos de existência, é a qualidade de tudo o que é real ou existe, podemos afirmar que é soma dos observáveis + inobserváveis. Definimos a existência como: possibilidades espaciais/subespaciais, temporais em nosso universo.

Em lógica um existencial recebe a letra:

Ex: ∃ x:P(x) significa que há pelo menos um x para o qual P(x) é verdadeiro.

Consequências devastadoras das crenças em inexistentes

  • Se você negar o coronavírus e publicar isso, você será severamente penalizado! Poderá ter suas redes sociais bloqueadas, canais do Youtube excluídos, etc.
  • Se negar as mudanças climáticas, idem!
  • Você se nega a receber a vacina do coronavírus e se pegar o vírus poderá morrer!
  • Você terá dificuldades em aceitar a plena automatização das tarefas humanas por robôs, IAs, e integração das cadeias produtivas na 4ª revolução industrial.
  • Você terá dificuldades em compreender as viagens espaciais e os avanços da tecnologia.

Não tente atribuir juízo de valor para inexistentes

As consequências da tentativa de atribuir juízos de valor para coisas que não existem, pode causar a nulidade da valoração dos assuntos em questão. Embora todos tenham o direito de expressar suas ideias e pensamentos, estamos sujeitos às regras existenciais.

Sobre liberdade de expressão

Qualquer pessoa tem direito à liberdade de expressão. Este direito compreende a liberdade de opinião e a liberdade de receber ou de transmitir informações ou ideias sem que possa haver ingerência de quaisquer autoridades públicas e sem considerações de fronteiras.

O exercício destas liberdades, porquanto implica deveres e responsabilidades, pode ser submetido a certas formalidades (∃), condições (∃), restrições (∃) ou sanções (∃), previstas pela lei (∃), que constituam providências necessárias, numa sociedade democrática, para a segurança nacional, a integridade territorial ou a segurança pública, a defesa da ordem e a prevenção do crime, a proteção da saúde ou da moral, a proteção da honra ou dos direitos de outrem, para impedir a divulgação de informações confidenciais, ou para garantir a autoridade e a imparcialidade do poder judicial.

(∃) = regras dos existenciais.

Quem determina o que existe e o que não existe?

  1. Lógica matemática (infraestrutura básica de nosso pensamento – educação básica)
  2. Leis da física (99,999% descobertas – educação básica)
  3. Ciência (extremamente confiável)
  4. Tecnologia (aprimoramento do ser humano)
  5. Epistemologia (estudo aprofundado do conhecimento)

Estes são os cinco pilares que determinam a identificação, normalização e propagação dos existenciais. Não há entidades, escolas, ou grupos que irão determinar o que existe ou não, essa determinação está condicionada ao grau educacional de cada ser humano no planeta, são atitudes proposicionais provadas e não acidentais.

Crença em inexistentes é pura falta de educação!

Em pleno século XXI é inadmissível que alguém em plena consciência e com sanidade cognitiva, com acesso à educação fundamental, ainda acredite em coisas que não existem. Se você acredita em algo que não pode existir, ou não existe, revise de forma urgente essa crença, caso contrário poderá trazer consequência devastadoras em sua vida e de seus semelhantes. Ex.: acidentes graves no trânsito (confiar no santinho pendurado no espelho retrovisor e dormir ao volante), morte por coronavírus (sua crença em seres inexistentes, sua igreja ou grupos do qual você faça parte, convenceram você a não tomar vacinas).

Só atingiremos a maturidade política no momento em que conseguirmos dispensar qualquer cultura metafísica, qualquer cultura que creia em poderes e forças não-humanas.

{John Dewey}.

Resumo epistemológico

  • Existência = Realidade U leis da física 99,999% (descobertas) é tudo o que existe no universo: matéria, energia, tempo, espaços, subespaços).
  • Inexistência = tudo o que não faz parte do realismo científico (equívocos existenciais: deus, deuses, espíritos, alma, etc.).
  • Simulação Cerebral = autopercepção de nós mesmos (é aqui que entra nossa consciência 99,999% simulada pelo cérebro).
  • Conhecimento = CVJV (crenças verdadeiras, justificas e validadas).
  • Ciência = descoberta e aplicação das leis da física
  • Tecnologia = aplicação da ciência.
  • Dado = informação armazenada.
  • Informação = aquisição de conhecimento.

Resumo filosófico

Convenções sobre operações indexadas no conjunto vazio

  • Somas vazias = 0
  • Produtos vazios = 1
  • Uniões vazias = ∅
  • Interseções vazias = o conjunto universo
  • Permutações vazias! = 1
  • O conjunto vazio { } = ∅ determina a origem dos microestados ou da informação que será medida.

Fórmula para a mínima possibilidade de medição:

μ(∅) = 0

O campo da Subjetividade

Os espaços/subespaços matemáticos (ao contrário dos espaços/subespaços físicos que são objetivos e independem de nossos conceitos) formam o campo da subjetividade, entendida como o subespaço íntimo do indivíduo, ou seja, como ele “instala via simulação cerebral” a sua opinião ao que é dito (mundo interno) com o qual ele se relaciona com o mundo social e físico (mundo externo), resultando tanto em marcas singulares na formação do indivíduo quanto na construção de crenças e valores compartilhados na dimensão cultural que vão constituir a experiência histórica e coletiva dos grupos e populações. A psicologia social utiliza frequentemente esse conceito de subjetividade e seus derivados como formação da subjetividade ou subjetivação. Etimologia: do latim subjectivus (subicere: “colocar sob” + jacere: “atirar, jogar, lançar”).

A subjetividade é o mundo interno simulado pelo cérebro de todo e qualquer ser humano. Este mundo interno é composto por emoções, sentimentos e pensamentos.

Na teoria do conhecimento, a subjetividade é o conjunto de ideias, significados e emoções que, por serem baseados no ponto de vista do sujeito, são influenciados por seus interesses e desejos particulares. Tem como oposto a objetividade (espaços/subespaços da física), que se baseia em um ponto de vista intersubjetivo, isto é, que pode ser verificável por diferentes sujeitos e medido, inclusive por dispositivos e aparatos da tecnologia.

Do ponto de vista da sociologia, a subjetividade se refere ao campo de ação e representação dos sujeitos – sempre condicionados a circunstâncias históricas, políticas e culturais.

Através da nossa subjetividade construímos um espaço relacional, ou seja, nos relacionamos com o “outro”. Este relacionamento nos insere dentro de esferas de representação social em que cada sujeito ocupa seu papel de agente dentro da sociedade. Estes sujeitos desempenham papeis diferentes de acordo com o ambiente e a situação em que se encontram, o que segundo Goffmam pode ser interpretado como ações de atores sociais. Somente a subjetividade contempla, coordena e conhece estas diversas facetas que compõem o indivíduo.

O campo das psicologias confronta-se cada vez mais com as exigências éticas colocadas pela necessidade de reconhecimento da alteridade como elemento constitutivo das subjetividades singulares.

As diferenças nos modos de subjetivação e constituição das subjetividades relacionam-se com a dimensão ética na medida em que esta sistematiza e justifica racionalmente um determinado código ou padrão de conduta, um determinado quadro de normas e valores e uma determinada postura a ser ensinada aos e exigidas dos sujeitos. As éticas, portanto, são como dispositivos “ensinantes” de subjetivação: elas efetivamente sujeitam os indivíduos, ensinando, orientando, modelando e exigindo a conversão dos homens em sujeitos morais historicamente determinados.

E sobre aqueles que trabalham divulgando inexistentes?!

Muitas vezes as pessoas me perguntam: e aqueles que trabalham nas profissões como escritores de ficção, padres, pastores, astrólogos, artistas, ilusionistas – os mágicos, as homeopatias, psicanalistas, espiritualistas, ufologistas, etc.

Quando o intuito é beneficiar o próximo e não lhes causar danos, prestando um serviço que seja digno e venha ao amparo das pessoas, esse tipo de inexistentes tornam-se um nicho e tendem a se dissipar com o tempo, porque os existenciais se sobrepõem em todas as coisas.

Núcleo existencial

Em todos os espaços/subespaços o conjunto vazio ∅ vem primeiro, portanto, o conjunto vazio ∅ funciona como um autovetor e autovalor, constituindo o núcleo existencial.

Quando o conjunto vazio ∅ não estiver presente, algo precisa vir em seu lugar – que seja um existente, não é mesmo? 😉

{RC}

Referências Bibliográficas

Qual a diferença entre Conhecimento, Informação e Dados? – Comece 2022 com essas dúvidas resolvidas!

Desejo a todos um 2022 repleto de experiências incríveis, muita saúde, foco em crescimento e constante aquisição de conhecimento. Por falar nisso, não poderia deixar de resumir esse assunto com base nas minhas últimas pesquisas. Boa leitura!

{RC}.

O que é conhecimento?

Conhecimento, do latim cognoscere (ato de conhecer), como a própria origem da palavra indica, é o ato ou efeito de conhecer. Como por exemplo: conhecimento das leis, conhecimento de um fato, conhecimento de um documento, termo de recibo ou nota em que se declara o aceite de um produto ou serviço; saber, instrução ou cabedal científico (homem com grande conhecimento), informação ou noção adquiridas pelo estudo ou pela experiência, (autoconhecimento) consciência de si mesmo.

No conhecimento temos dois elementos básicos: o sujeito (cognoscente) e o objeto (cognoscível), o cognoscente é o indivíduo capaz de adquirir conhecimento ou o indivíduo que possui a capacidade de conhecer. O cognoscível é o que se pode conhecer.

Qual a origem do conhecimento?

A origem é o núcleo de nossa capacidade de adquirirmos conhecimentos, reside nos espaços/subespaços subjacentes. Você poderá ler os detalhes técnicos no meu outro poste: Qual a origem do conhecimento? A resposta é a percepção do vazio (∅)!

Crítica à teoria CVJ e contraexemplos de Edmund Gettier

O conhecimento pode ser compreendido como uma “crença verdadeira justificada (CVJ)”, isto é, um dado sujeito tem uma crença – opinião – essa crença é verdadeira e o sujeito tem boas razões para a justificativa. Assim sendo, crença, verdade e justificação são condições necessárias para que se constitua conhecimento, mas apenas no seu conjunto são suficientes. Crença é uma condição necessária pois não é possível conhecer sem acreditar. Por outro lado, esta não constitui uma condição suficiente pois esta não passa de uma opinião, podendo, então, ser falsa, saber/conhecer é, portanto, diferente de acreditar. Verdade é uma condição necessária uma vez que o conhecimento é factivo (expressa a verdade), ou seja, não se podem conhecer falsidades. No entanto esta não é por si só uma condição suficiente, dado que podemos acreditar em alguma coisa que é verdadeira sem que saibamos que esta é verdadeira. Justificação é uma condição necessária já que é necessário haver boas razões nas quais apoiar a verdade de uma crença. Contudo a justificação não é por si uma condição suficiente, porque ter razões para acreditar em algo não garante que essa crença seja verdadeira.

A (V)alidação de CVJ torna-se obrigatória

Ao analisar os contraexemplos de Gettier, podemos perceber sem sombra de dúvidas que CVJ (Crença Verdadeira e Justificada), é insuficiente para definir conhecimento. Um quarto critério se faz necessário: a validação pós justificativa).

É importante distinguir entre casos de conhecimento e casos de crença meramente verdadeira, mais especialmente porque um erro de julgamento, neste caso, significa o confisco ou a continuação da vida de outro ser humano. É, portanto, seguro dizer que, neste e em outros casos semelhantes, não sustentar a distinção acima mencionada é desastroso não apenas na lógica epistêmica, mas também moralmente.

A coesão definitiva de CVJV, subespaços e teoria da simulação cerebral

Para tornar o conhecimento coeso e adaptado às tecnologias atuais, fiz adição da teoria da simulação cerebral com subespaços – embora isso torne o tema um pouco complexo -, considero de extrema importância para evitar o chamado ED (Erro Degrau). Esse erro é o principal causador das falhas educacionais, principalmente em países do terceiro mundo como no Brasil.

Um exemplo de erro degrau: pensar que a energia é transmitida por dentro dos fios elétricos quando na verdade é por fora deles (nos subespaços eletromagnéticos) – segue as provas nas referências bibliográficas, tratarei desse assunto breve em um novo poste.

Como nasceu a teoria da informação?

A origem da informação ou teoria da informação nasceu com o particionamento binário de espaço proposto por Shannon. Leia meu resumo em: Teoria da informação e entropia – como passamos do conhecimento para a informação?

Convenções sobre operações indexadas no conjunto vazio

  • Somas vazias = 0
  • Produtos vazios = 1
  • Uniões vazias = ∅
  • Interseções vazias = o conjunto universo
  • Permutações vazias = 1

A razão instrumental μ(∅) determina a origem dos microestados ou da informação medida.

{RFC}

O que são dados?

Podem ser compreendidos como conjuntos de informações que, independente de sua forma (espacial ou subespacial, como codificados em computadores), representam uma fonte de conhecimento. Estes podem assumir diversas formas, tais como letras, palavras, imagens, vídeos, símbolos matemáticos, entre outros. Os dados são a matéria-prima para a aquisição de conhecimento e são classificados em dois tipos principais: estruturados e não estruturados.

Representação e codificação de dados nos computadores

Os computadores foram concebidos com o propósito de manipular informações na forma de dados, seguindo critérios lógicos determinantes para o tratamento da informação, sua representação, armazenamento, recuperação e transmissão. A codificação dos dados é essencial para sua interpretação e processamento.

Os dados podem ser classificados no tipo: estruturados e não estruturados.

Resumo Epistemológico

Referências Bibliográficas